Modulation of the biologic activities of IgE-binding factors. VII. Biochemical mechanisms by which glycosylation-enhancing factor activates phospholipase in lymphocytes. 1985

M Akasaki, and M Iwata, and K Ishizaka

Cells of the T cell hybridoma 23A4 produce IgE-binding factors lacking N-linked oligosaccharides (unglycosylated form) when they are incubated with IgE alone. In the presence of glycosylation-enhancing factor (GEF) or bradykinin, however, the same cells produce IgE-binding factors with N-linked oligosaccharides (glycosylated form). Switching the cells from the formation of unglycosylated IgE-binding factors to the formation of glycosylated factors was accompanied by the release of both glycosylation-inhibiting factor (GIF) in its phosphorylated form, i.e., phosphorylated lipomodulin, and arachidonate from the cells. Analysis of the biochemical processes for the release of GIF from 23A4 cells showed that affinity-purified GEF or bradykinin induced transient phospholipid methylation and diacylglycerol (DAG) formation, and enhanced 45Ca uptake into the cells. Inhibitors of methyltransferases, i.e., 3-deaza-adenosine plus L-homocysteine thiolactone, inhibited not only phospholipid methylation but also DAG formation and GIF release. Exogenously added 1-oleoyl-2-acetyl glycerol, i.e., a DAG that is permeable to the plasma membrane, induced the release of GIF from the cells. It was also found that 12-O-tetradecanoyl-phorbol 13-acetate (TPA) switched 23A4 cells and normal lymphocytes to the selective formation of N-glycosylated IgE-binding factor, and induced the release of GIF from the cells. 32PO4-labeled lipomodulin was detected in the extract of 23A4 cells 3 to 5 min after the addition of GEF, bradykinin, or TPA. These results indicate that GEF and bradykinin induced the activation of methyltransferases and phospholipase C for the formation of DAG, which in turn activated Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) for the phosphorylation of lipomodulin. Because lipomodulin loses phospholipase inhibitory activity after phosphorylation, increased phospholipase A2 activity would be expressed by this process.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg

Related Publications

M Akasaki, and M Iwata, and K Ishizaka
April 1983, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
October 1983, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
August 1981, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
February 1983, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
July 1984, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
May 1981, Journal of immunology (Baltimore, Md. : 1950),
M Akasaki, and M Iwata, and K Ishizaka
January 1989, Clinical reviews in allergy,
Copied contents to your clipboard!