Metabolic regulation of single synaptic vesicle exo- and endocytosis in hippocampal synapses. 2024

Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
July 2022, Biomedicines,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
August 2010, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
September 2021, Molecular biology of the cell,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
September 2004, Trends in neurosciences,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
January 2018, Frontiers in cellular neuroscience,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
September 2017, Journal of visualized experiments : JoVE,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
May 2022, Cell calcium,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
May 2012, Neuroscience research,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
September 2003, Nature neuroscience,
Jongyun Myeong, and Marion I Stunault, and Vitaly A Klyachko, and Ghazaleh Ashrafi
December 2009, Acta medica Okayama,
Copied contents to your clipboard!