Hormonal and developmental regulation of expression of the hepatic microsomal steroid 16 alpha-hydroxylase cytochrome P-450 apoprotein in the rat. 1985

E T Morgan, and C MacGeoch, and J A Gustafsson

The hormonal regulation of the sexually differentiated cytochrome P-450 isozyme which catalyzes 16 alpha-hydroxylation of testosterone and 4-androstene-3,17-dione in male rat liver (P-450(16) alpha) was investigated. Estradiol valerate injection of male rats caused a decrease in P-450(16) alpha levels to almost the female level, while methyltrienolone injection had the reverse effect in female animals. Hypophysectomy abolished the sex difference in P-450(16) alpha levels. Human growth hormone infusion into male rats, mimicking the female pattern of growth hormone secretion, caused a feminization of P-450(16) alpha levels. The same effect was also seen in hypophysectomized rats of both sexes. In contrast, a different administration schedule involving 12 h injections of human growth hormone, mimicking the male pattern of growth hormone secretion, caused a masculinization of P-450(16) alpha levels in hypophysectomized rats, at a daily dose which causes feminization when given by infusion. Thus, the level of expression of P-450(16) alpha in the liver is dependent on the temporal pattern of blood growth hormone levels. While infusion of rat growth hormone into male rats also feminized the P-450(16) alpha levels, infusion of ovine prolactin had no effect. Ontogenic studies showed that the developmental pattern of P-450(16) alpha expression in the liver coincided with the known pattern of development of the sexual differentiation of hepatic steroid 16 alpha-hydroxylase activity and of the diurnal pattern of growth hormone secretion.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004963 Estrenes Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds. 19-Norandrostenes,19 Norandrostenes
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E T Morgan, and C MacGeoch, and J A Gustafsson
January 1984, Annals of the New York Academy of Sciences,
E T Morgan, and C MacGeoch, and J A Gustafsson
April 1985, Proceedings of the National Academy of Sciences of the United States of America,
E T Morgan, and C MacGeoch, and J A Gustafsson
January 1975, Current topics in molecular endocrinology,
E T Morgan, and C MacGeoch, and J A Gustafsson
November 1982, Xenobiotica; the fate of foreign compounds in biological systems,
E T Morgan, and C MacGeoch, and J A Gustafsson
February 1986, Biochemical pharmacology,
E T Morgan, and C MacGeoch, and J A Gustafsson
January 1991, Advances in pharmacology (San Diego, Calif.),
E T Morgan, and C MacGeoch, and J A Gustafsson
August 1987, Biochemical Society transactions,
Copied contents to your clipboard!