Neuromuscular Junction Development Differs Between Extraocular and Skeletal Muscles and Between Different Extraocular Muscles. 2024

Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.

To determine whether development of neuromuscular junctions (NMJs) differs between extraocular muscles (EOMs) and other skeletal muscles. Mouse EOMs, diaphragm, and tibialis anterior (TA) were collected at postnatal day (P)0, P3, P7, P10, P14, and P21, and 12 weeks. Whole muscles were stained with α-bungarotoxin, anti-neurofilament antibody, and slow or fast myosin heavy chain antibody, and imaged with a confocal microscope. Images were quantified using Imaris software. NMJs in the EOMs show a unique pattern of morphological development compared to diaphragm and TA. At P0, diaphragm and TA NMJs were oval plaques; EOM single NMJs were long, thin rods. NMJs in the three muscle types progress to mature morphology at different rates. At all ages, EOM single NMJs were larger, especially relative to myofiber size. The inferior oblique and inferior rectus muscles show delayed single NMJ development compared to other EOMs. NMJs on multiply-innervated fibers in the EOMs vary widely in size, and there were no consistent differences between muscles or over time. Incoming motor nerves formed complex branching patterns, dividing first into superficial and deep branches, each of which branched extensively over the full width of the muscle. Motor axons that innervate multiply-innervated fibers entered the muscle with the axons that innervate singly-innervated fibers, then extended both proximally and distally. EOM NMJs had more subsynaptic nuclei than skeletal muscle NMJs throughout development. EOMs show a unique pattern of NMJ development and have more subsynaptic nuclei than other muscles, which may contribute to the exquisite control of eye movements.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin

Related Publications

Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
February 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
January 1968, Nippon Ganka Gakkai zasshi,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
October 2004, American journal of physical medicine & rehabilitation,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
April 2002, Neuron,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
November 1987, European journal of pharmacology,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
September 1950, The Anatomical record,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
February 2003, Ophthalmology,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
June 1967, Investigative ophthalmology,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
April 2014, Journal of neuroscience methods,
Sampath Vemula, and Tapiwa Muvavarirwa, and Fleur Doornbos, and Mary C Whitman
December 1994, Investigative ophthalmology & visual science,
Copied contents to your clipboard!