Possible involvement of opioid peptides of caudate nucleus in acupuncture analgesia. 1985

He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
Laboratory of Neurophysiology and Neurochemistry, Research Department of Acupuncture, Shanghai First Medical College, ShanghaiPeople's Rep. of China.

Rabbits chronically implanted with permanent cannulae were used in brain perfusion and microinjection experiments. Potassium iontophoresis applied to the rabbits' ear skin served as a noxious stimulus and the electric current used to elicit the defense response was taken as the pain threshold. The brain perfusate was analysed by radioreceptor assay and the level of endogenous opioid peptides (EOP) was expressed as competition rate. Electroacupuncture (EA) elicited an increase in pain threshold and a rise in EOP level in the perfusate from the anterior part of the head of the caudate nucleus (n = 10, P less than 0.002) but not from the posterior part. The pain threshold raising effect of EA could readily be reversed by microinjection of naloxone into the anterodorsal part of the head of the caudate (n = 12, P less than 0.01). With the techniques of multimicropipettes and microiontophoresis, caudate neuronal activity was recorded and examined in acute animals anesthetized with chloralose and urethane. It was found that microiontophoresed etorphine produced a strong, naloxone reversible inhibition of the spontaneous activity of the caudate neurons (61/162). Most etorphine sensitive neurons were identified in the dorsal part of the head of the caudate (P less than 0.01). EA produced inhibition of some etorphine sensitive neurons (16/35) and the inhibition could also be reversed by microiontophoresis of naloxone (4/8). The results indicate the participation of intracaudate opioid peptides in acupuncture analgesia.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002421 Caudate Nucleus Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain. Caudatus,Nucleus Caudatus,Caudatus, Nucleus,Nucleus, Caudate
D004561 Transcutaneous Electric Nerve Stimulation The use of specifically placed small electrodes to deliver electrical impulses across the SKIN to relieve PAIN. It is used less frequently to produce ANESTHESIA. Analgesic Cutaneous Electrostimulation,Electric Stimulation, Transcutaneous,Electroanalgesia,Percutaneous Electric Nerve Stimulation,TENS,Transdermal Electrostimulation,Electrical Stimulation, Transcutaneous,Percutaneous Electrical Nerve Stimulation,Percutaneous Electrical Neuromodulation,Percutaneous Neuromodulation Therapy,Transcutaneous Electrical Nerve Stimulation,Transcutaneous Nerve Stimulation,Cutaneous Electrostimulation, Analgesic,Electrical Neuromodulation, Percutaneous,Electrical Neuromodulations, Percutaneous,Electroanalgesias,Electrostimulation, Analgesic Cutaneous,Electrostimulation, Transdermal,Nerve Stimulation, Transcutaneous,Neuromodulation Therapy, Percutaneous,Neuromodulation, Percutaneous Electrical,Neuromodulations, Percutaneous Electrical,Percutaneous Electrical Neuromodulations,Percutaneous Neuromodulation Therapies,Stimulation, Transcutaneous Electric,Stimulation, Transcutaneous Nerve,Therapy, Percutaneous Neuromodulation,Transcutaneous Electric Stimulation,Transcutaneous Electrical Stimulation

Related Publications

He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
October 1987, Pain,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
January 1981, Acupuncture & electro-therapeutics research,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
October 1986, Sheng li ke xue jin zhan [Progress in physiology],
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
January 1987, Zhen ci yan jiu = Acupuncture research,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
February 2002, Sheng li xue bao : [Acta physiologica Sinica],
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
January 1982, Acupuncture & electro-therapeutics research,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
January 1995, Acupuncture & electro-therapeutics research,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
March 1984, Japanese journal of pharmacology,
He Lianfang, and Lu Ruiliang, and Zhuang Shouyuan, and Zhang Xuegui, and Pan Xiaoping
January 1995, Acupuncture & electro-therapeutics research,
Copied contents to your clipboard!