Primary structure and properties of an inactive mutant aspartate transcarbamoylase. 1979

K A Wall, and H K Schachman

A mutant form of Escherichia coli aspartate transcarbamoylase (ATCase) which lacks catalytic activity has been purified and characterized (Wall, K.A., Flatgaard, J.E., Gibbons, I., and Schachman, H.K. (1979) J. Biol. Chem 254, 11910-11916). Peptide mapping of the mutant and wild type catalytic chains followed by the determination of the amino acid sequence of the one altered peptide in the mutant indicated that a glycyl residue was replaced by aspartic acid. This substitution is located at position 125 in the tentative sequence kindly provided by W. Konigsberg (personal communication). The mutant protein has an overall secondary structure similar to that of the wild type as indicated by circular dichroism spectroscopy. However, marked changes in the reactivity of several amino acid residues were demonstrated. Lysyl residue 84 which in the wild type subunits reacts specifically with pyridoxal 5'-phosphate is only slightly reactive in the mutant even though the peptide containing that residue was not altered in amino acid composition. Another residue, cysteinyl 46, which is thought to be in the active site, is much more reactive toward p-hydroxymercuribenzoate in the mutant subunit than in the wild type protein. Finally, tyrosyl residue 213, which according to recent crystallographic studies is not near the active site and which exhibits an unusually low pK (9.1) in the wild type catalytic subunits, appears to have its pK shifted to 10.5 or higher as a result of the mutation. The evidence indicates that the substitution of an aspartyl for a glycyl residue at a region of the amino acid sequence remote from those residues in the active site causes sufficient modification of the tertiary structure to cause the loss of enzyme activity and to affect the reactivity of other residues in the protein. Moreover, the quaternary structure of the intact enzyme is altered as well since the subunit interactions are greatly weakened.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011732 Pyridoxal Phosphate This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE). Pyridoxal 5-Phosphate,Pyridoxal-P,Phosphate, Pyridoxal,Pyridoxal 5 Phosphate,Pyridoxal P
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

K A Wall, and H K Schachman
September 1971, The Biochemical journal,
K A Wall, and H K Schachman
March 2012, Accounts of chemical research,
K A Wall, and H K Schachman
May 1982, The Biochemical journal,
K A Wall, and H K Schachman
September 1972, The Biochemical journal,
K A Wall, and H K Schachman
July 2016, Acta crystallographica. Section F, Structural biology communications,
K A Wall, and H K Schachman
May 2012, Proceedings of the National Academy of Sciences of the United States of America,
K A Wall, and H K Schachman
July 2002, The Journal of biological chemistry,
Copied contents to your clipboard!