O6 alkylguanine-DNA alkyltransferase activity in human myeloid cells. 1985

S L Gerson, and K Miller, and N A Berger

The association between alkylating agent exposure and acute nonlymphocytic leukemia in humans indicates that myeloid cells may be particularly susceptible to mutagenic damage. Alkylating agent mutagenesis is frequently mediated through formation and persistence of a particular DNA base adduct, O6alkylguanine, which preferentially mispairs with thymine rather than cytosine, leading to point mutations. O6alkylguanine is repaired by O6alkylguanine-DNA alkyltransferase (alkyltransferase), a protein that removes the adduct, leaving an intact guanine base in DNA. We measured alkyltransferase activity in myeloid precursors and compared it with levels in other cells and tissues. In peripheral blood granulocytes, monocytes, T lymphocytes, and B lymphocytes, there was an eightfold range of activity between individuals but only a twofold range in the mean activity between cell types. Normal donors maintained stable levels of alkyltransferase activity over time. In bone marrow T lymphocytes and myeloid precursors, there was an eightfold range of alkyltransferase activity between donors. Alkyltransferase activity in the two cell types was closely correlated in individual donors, r = 0.69, P less than 0.005, but was significantly higher in the T lymphocytes than the myeloid precursors, P less than 0.05. Liver contained the highest levels of alkyltransferase of all tissues tested. By comparison, small intestine contained 34%, colon 14%, T lymphocytes 11%, brain 11%, and myeloid precursors 6.6% of the activity found in liver. Thus, human myeloid precursors have low levels of O6alkylguanine-DNA alkyltransferase compared with other tissues. Low levels of this DNA repair protein may increase the susceptibility of myeloid precursors to malignant transformation after exposure to certain alkylating agents.

UI MeSH Term Description Entries
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

S L Gerson, and K Miller, and N A Berger
July 1984, Cancer research,
S L Gerson, and K Miller, and N A Berger
July 1992, Journal of dermatological science,
S L Gerson, and K Miller, and N A Berger
December 1990, Cancer letters,
S L Gerson, and K Miller, and N A Berger
November 1991, The Tohoku journal of experimental medicine,
S L Gerson, and K Miller, and N A Berger
August 2007, DNA repair,
S L Gerson, and K Miller, and N A Berger
March 1997, American journal of industrial medicine,
S L Gerson, and K Miller, and N A Berger
January 1992, Cancer chemotherapy and pharmacology,
S L Gerson, and K Miller, and N A Berger
January 2000, Methods in molecular biology (Clifton, N.J.),
S L Gerson, and K Miller, and N A Berger
August 1992, The Biochemical journal,
S L Gerson, and K Miller, and N A Berger
January 1994, European journal of cancer (Oxford, England : 1990),
Copied contents to your clipboard!