Paeoniflorin alleviates TGF-β2-mediated extracellular matrix remodeling and oxidative stress in human trabecular meshwork cells. 2024

Yongmei Hu, and Kui Ge, and Yan Du
Department of Ophthalmology, The First People's Hospital of Jiangxia District, Wuhan, No.1 Wenhua Avenue, Zhifang Street, Jiangxia District, Wuhan, 430200, China.

BACKGROUND The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-β2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-β2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-β2 (5 ng/mL). PAE (300 μM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-β2 for 22 h. SB-431542, a TGF-β receptor inhibitor (10 μM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-β2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS PAE attenuated TGF-β2-induced oxidative stress and suppressed TGF-β2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-β2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-β2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSIONS PAE alleviates TGF-β2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005960 Glucosides A GLYCOSIDE that is derived from GLUCOSE. Glucoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014129 Trabecular Meshwork A porelike structure surrounding the entire circumference of the anterior chamber through which aqueous humor circulates to the SCHLEMM'S CANAL. Meshwork, Trabecular,Meshworks, Trabecular,Trabecular Meshworks
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D053781 Transforming Growth Factor beta2 A TGF-beta subtype that was originally identified as a GLIOBLASTOMA-derived factor which inhibits the antigen-dependent growth of both helper and CYTOTOXIC T LYMPHOCYTES. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta2 and TGF-beta2 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. TGF-beta2,BSC-1 Cell Growth Inhibitor,Cartilage-Inducing Factor-B,Glioblastoma-Derived T-Cell Suppressor Factor,Polyergin,Suppressor Factor, T-Cell, Glioblastoma-Derived,TGF-beta-2,TGF-beta2 Latency-Associated Protein,TGF-beta2LAP,Transforming Growth Factor beta 2 Latency Associated Peptide,BSC 1 Cell Growth Inhibitor,Cartilage Inducing Factor B,Glioblastoma Derived T Cell Suppressor Factor,Latency-Associated Protein, TGF-beta2,TGF beta2 Latency Associated Protein,TGF beta2LAP
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D039821 Monoterpenes Compounds with a core of 10 carbons generally formed via the mevalonate pathway from the combination of 3,3-dimethylallyl pyrophosphate and isopentenyl pyrophosphate. They are cyclized and oxidized in a variety of ways. Due to the low molecular weight many of them exist in the form of essential oils (OILS, VOLATILE). Monoterpene,Monoterpenoid,Monoterpenoids

Related Publications

Yongmei Hu, and Kui Ge, and Yan Du
January 2013, PloS one,
Yongmei Hu, and Kui Ge, and Yan Du
April 2021, Investigative ophthalmology & visual science,
Yongmei Hu, and Kui Ge, and Yan Du
May 2017, Experimental eye research,
Yongmei Hu, and Kui Ge, and Yan Du
August 2019, Investigative ophthalmology & visual science,
Yongmei Hu, and Kui Ge, and Yan Du
January 2021, Antioxidants (Basel, Switzerland),
Yongmei Hu, and Kui Ge, and Yan Du
January 2018, Naunyn-Schmiedeberg's archives of pharmacology,
Yongmei Hu, and Kui Ge, and Yan Du
April 2000, Experimental eye research,
Yongmei Hu, and Kui Ge, and Yan Du
October 2013, Investigative ophthalmology & visual science,
Copied contents to your clipboard!