Effect of 1,25-dihydroxyvitamin D3 on cytokine-induced thymocyte proliferation. 1985

T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita

To clarify the mechanism of the inhibitory effect of 1,25(OH)2D3 on lymphocyte proliferation, the effect of 1,25(OH)2D3 on murine thymocyte proliferation induced by interleukin 1 (IL-1), or 2 (IL-2) was examined. Physiological concentrations of 1,25(OH)2D3 inhibited thymocyte proliferation induced by IL-1 and IL-2 in similar fashion suggesting an inhibition of the response to IL-2 by this hormone. In addition, cortisone-resistant thymocytes (including a majority of medullary thymocytes), which proliferate more vigorously in response to IL-1 than do untreated thymocytes, were more sensitive to 1,25(OH)2D3 inhibition. Therefore, the inhibition of IL-2 production of the mature medullary thymocyte by this hormone was also suggested.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003348 Cortisone A naturally occurring glucocorticoid that has been used in replacement therapy for ADRENAL INSUFFICIENCY and as an anti-inflammatory agent. Cortisone itself is inactive; it is converted in the liver to the active metabolite HYDROCORTISONE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726) 17-Hydroxy-3,11,20-trioxopregn-4-en-21-yl acetate,Adreson,Cortisone Acetate,Cortone Acetate
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
January 1986, Thymus,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
May 1991, The Journal of laboratory and clinical medicine,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
April 2001, The Journal of endocrinology,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
May 1995, Journal of cellular physiology,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
May 1981, Diabetes,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
April 1983, Horumon to rinsho. Clinical endocrinology,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
October 1996, Mechanisms of ageing and development,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
March 1988, The Biochemical journal,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
November 2019, The Journal of surgical research,
T Koizumi, and Y Nakao, and T Matsui, and T Nakagawa, and Y Katakami, and T Fujita
April 1987, Calcified tissue international,
Copied contents to your clipboard!