Alkaline phosphatase. 31P NMR probes of the mechanism. 1985

P Gettins, and M Metzler, and J E Coleman

31P NMR signals from substrates and products of alkaline phosphatase have been adapted to measure the rates and product ratios for the hydrolysis and phosphotransferase reactions from pH 6 to 10. Below pH 8, glycerol is a poorer acceptor than H2O (glycerol phosphates:Pi = 0.5). Tris is a more effective acceptor below pH 8, showing a maximum acceptor efficiency at pH 8 (Tris phosphate:Pi = 2). Phosphotransferase efficiencies are in the order expected for the pKaS of the alcohol groups, Tris less than glycerol Cl, C3 less than glycerol C2. Tris and glycerol induce chemical shifts in 113Cd(II) present at the A site but not the B or C sites of the metal triad present at each active center of Cd(II)6 alkaline phosphatase, suggesting that the alcoxides of the acceptors coordinate the A site metal and become the nucleophiles attacking the phosphoseryl residue (E-P) in the second step of the mechanism. The interaction is through the oxygen of Tris. The transferase activity of the amino alcohol shows a bell-shaped pH dependency. Aliphatic alcohol acceptors show small increases in acceptor activity between pH 6 and 8, with 5-fold increases from pH 8 to 10 (at pH 10, glycerol phosphates:Pi = 2.5). 31P NMR inversion transfer has been used to measure the koff for Pi dissociation from the noncovalent enzyme complex (E . P). For the Zn(II)4 alkaline phosphatase koff is essentially pH independent at approximately 35 s-1. For Cd(II) or Mg(II) at the B site in place of Zn(II), koff less than or equal to 1 s-1 X Cl-ion, which appears to coordinate the A site metal ion, enhances koff, suggesting that both Cl- and HPO2-4 can coordinate the A site metal ion in a 5-coordinate intermediate. pH control of the alkaline phosphatase mechanism appears to reside in the stability of E-P and not the dissociation of E . P, compatible with the hypothesis that the activity-linked pKa is that of a H2O molecule coordinated to the A site metal, which in the hydroxide form becomes the nucleophile attacking the phosphoseryl group (E-P).

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

P Gettins, and M Metzler, and J E Coleman
September 1975, Biochemical and biophysical research communications,
P Gettins, and M Metzler, and J E Coleman
March 1979, The Journal of biological chemistry,
P Gettins, and M Metzler, and J E Coleman
June 1979, The Journal of biological chemistry,
P Gettins, and M Metzler, and J E Coleman
September 1978, Biochimica et biophysica acta,
P Gettins, and M Metzler, and J E Coleman
April 1984, The Journal of biological chemistry,
P Gettins, and M Metzler, and J E Coleman
January 1983, The Journal of biological chemistry,
P Gettins, and M Metzler, and J E Coleman
April 1992, Genetic analysis, techniques and applications,
Copied contents to your clipboard!