In vitro natural cell-mediated cytotoxicity against Candida albicans: macrophage precursors as effector cells. 1985

M Baccarini, and F Bistoni, and M L Lohmann-Matthes

Bone marrow cells, cultured in L-929 CSF, consist of cells of granulocyte and macrophage lineages. Cells of the granulocyte lineage are known to be cytotoxic for Candida albicans. In this paper we report that macrophage precursor cells also display strong cell-mediated cytotoxicity against the yeast form of the dimorphic fungus C. albicans. The macrophage precursors responsible for this activity are nylon wool-nonadherent, nonphagocytic cells and lack asialo GM1 surface antigen. A purified population of macrophage precursors (greater than 95%) was obtained by means of Percoll density centrifugation. The interaction of these purified effectors with the target yeast cells was analyzed at a single cell level, and their activity was compared with that displayed by cells of the granulocytic series derived from the same bone marrow culture. Macrophage precursor cells proved to be more effective in binding the target cells and showed the same killing ability as the granulocytes: macrophage precursors were not damaged by contact with the target, in contrast to that which happened with granulocytes. In a long-term colony-forming unit assay, in fact, granulocytic cells showed a decrease over time in their ability to inhibit the growth of C. albicans, probably due to cell damage and death after the interaction with the target. In contrast, no loss of activity was observed with the macrophage precursor fraction. The same macrophage precursor cells also proved able to exert good natural killer activity against YAC-1 lymphoma cells, but not against P815 mastocytoma cells, as reported previously. The macrophage precursor cells, when cultivated in vitro to mature macrophages, lost completely their natural cytotoxicity against C. albicans and YAC-1 cells. The implications of these findings, as well as the possible role in vivo of such a precursor cell population during an infection, are discussed.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell

Related Publications

M Baccarini, and F Bistoni, and M L Lohmann-Matthes
June 1986, European journal of immunology,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
February 1972, European journal of immunology,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
January 1988, Natural immunity and cell growth regulation,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
January 1981, Urological research,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
May 1981, Blut,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
February 1986, Infection and immunity,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
July 1981, Cellular immunology,
M Baccarini, and F Bistoni, and M L Lohmann-Matthes
May 1978, British journal of cancer,
Copied contents to your clipboard!