Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications. 2024

Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China.

The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.

UI MeSH Term Description Entries

Related Publications

Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
February 2020, Environmental microbiology reports,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
May 2014, Biological chemistry,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
January 2010, Chemosphere,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
February 2024, Chemosphere,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
October 2018, Environmental microbiology,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
August 2012, Ying yong sheng tai xue bao = The journal of applied ecology,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
July 2020, Microbial biotechnology,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
April 2005, Chemosphere,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
September 1958, Die Pharmazie,
Qin Li, and Yanhong Zheng, and Lijun Guo, and Ying Xiao, and Haiyue Li, and Pingping Yang, and Li Xia, and Xiangqing Liu, and Zhangyan Chen, and Li Li, and Huaidong Zhang
November 2006, Biomedical chromatography : BMC,
Copied contents to your clipboard!