Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins. 1979

N Nelson, and G Schatz

Earlier work has shown that mitochondrial proteins synthesized in the cytosol are initially made as larger precursors which are then transferred into the organelles and processed to their mature size in the absence of protein synthesis. It is now demonstrated that depletion of the mitochondrial matrix ATP in intact yeast spheroplasts by various combinations of inhibitors and mutations prevents the processing of precursors to the three largest subunits of the mitochondrial F1-ATPase and two subunits of the cytochrome bc1 complex. These polypeptides are all synthesized outside the mitochondria and transported to the mitochondrial matrix or inserted into the mitochondrial inner membrane. In contrast, depletion of the matrix ATP does not inhibit processing of the precursor to cytochrome c peroxidase; this enzyme is located in the mitochondrial intermembrane space which is freely accessible to ATP made in the cytosol. The processing of extramitochondrially made precursors or the transfer of these precursors across the mitochondrial inner membrane is thus dependent on ATP.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011498 Protein Precursors Precursors, Protein
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014475 Uncoupling Agents Chemical agents that uncouple oxidation from phosphorylation in the metabolic cycle so that ATP synthesis does not occur. Included here are those IONOPHORES that disrupt electron transfer by short-circuiting the proton gradient across mitochondrial membranes. Agents, Uncoupling

Related Publications

N Nelson, and G Schatz
December 1984, Biochemical Society transactions,
N Nelson, and G Schatz
October 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
N Nelson, and G Schatz
December 1998, Seikagaku. The Journal of Japanese Biochemical Society,
N Nelson, and G Schatz
January 1983, Methods in enzymology,
N Nelson, and G Schatz
February 1986, European journal of biochemistry,
N Nelson, and G Schatz
November 1982, The Journal of biological chemistry,
N Nelson, and G Schatz
January 1991, Biomedica biochimica acta,
Copied contents to your clipboard!