Genetics of type II glycogenosis: assignment of the human gene for acid alpha-glucosidase to chromosome 17. 1979

G G D'Ancona, and J Wurm, and C M Croce

We have studied somatic cell hybrids between thymidine kinase (EC 2.7.1.75) deficient mouse cells and human diploid fibroblasts for the expression of human acid alpha-glucosidase (EC 3.2.1.20). A deficiency in this enzyme is associated with the type II glycogenosis or Pompe disease. All 30 somatic cell hybrids selected in hypoxanthine/aminopterin/thymidine medium expressed human acid alpha-glucosidase and galactokinase (EC 2.7.1.6) and retained human chromosome 17; counterselection of the same hybrids in medium containing 5-bromodeoxyuridine resulted in the growth of hybrids that concordantly lost the expression of human acid alpha-glucosidase and galactokinase as well as human chromosome 17. Hybrids between thymidine kinase-deficient mouse cells and fibroblasts from a patient with Pompe disease that contained human chromosome 17 were found not to express human acid alpha-glucosidase. Because we have already shown that hybrids between mouse peritoneal macrophages and GM54VA simian virus 40-transformed human cells selectively retain human chromosome 17 and lose all other human chromosomes, we tested 13 independent mouse macrophage x GM54VA hybrid clones, including two that retained human chromosome 17 and no other human chromosomes, for the expression of human acid alpha-glucosidase and galactokinase. All 13 hybrid clones were found to express these human enzymes. Thus, we conclude that the gene coding for human acid alpha-glucosidase is located on human chromosome 17.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D002902 Chromosomes, Human, 16-18 The short, submetacentric human chromosomes, called group E in the human chromosome classification. This group consists of chromosome pairs 16, 17, and 18. Chromosomes E,Group E Chromosomes,Chromosome, Group E,Chromosomes, Group E,E Chromosomes, Group,Group E Chromosome
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005959 Glucosidases Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-. Glucosidase
D006008 Glycogen Storage Disease A group of inherited metabolic disorders involving the enzymes responsible for the synthesis and degradation of glycogen. In some patients, prominent liver involvement is presented. In others, more generalized storage of glycogen occurs, sometimes with prominent cardiac involvement. Glycogenosis,Disease, Glycogen Storage,Diseases, Glycogen Storage,Glycogen Storage Diseases,Glycogenoses,Storage Disease, Glycogen,Storage Diseases, Glycogen
D006009 Glycogen Storage Disease Type II An autosomal recessively inherited glycogen storage disease caused by GLUCAN 1,4-ALPHA-GLUCOSIDASE deficiency. Large amounts of GLYCOGEN accumulate in the LYSOSOMES of skeletal muscle (MUSCLE, SKELETAL); HEART; LIVER; SPINAL CORD; and BRAIN. Three forms have been described: infantile, childhood, and adult. The infantile form is fatal in infancy and presents with hypotonia and a hypertrophic cardiomyopathy (CARDIOMYOPATHY, HYPERTROPHIC). The childhood form usually presents in the second year of life with proximal weakness and respiratory symptoms. The adult form consists of a slowly progressive proximal myopathy. (From Muscle Nerve 1995;3:S61-9; Menkes, Textbook of Child Neurology, 5th ed, pp73-4) Acid Maltase Deficiency Disease,Generalized Glycogenosis,Glycogenosis 2,Lysosomal alpha-1,4-Glucosidase Deficiency Disease,Pompe Disease,Acid Alpha-Glucosidase Deficiency,Acid Maltase Deficiency,Adult Glycogen Storage Disease Type II,Alpha-1,4-Glucosidase Deficiency,Deficiency Disease, Acid Maltase,Deficiency Disease, Lysosomal alpha-1,4-Glucosidase,Deficiency of Alpha-Glucosidase,GAA Deficiency,GSD II,GSD2,Glycogen Storage Disease II,Glycogen Storage Disease Type 2,Glycogen Storage Disease Type II, Adult,Glycogen Storage Disease Type II, Infantile,Glycogen Storage Disease Type II, Juvenile,Glycogenosis Type II,Infantile Glycogen Storage Disease Type II,Juvenile Glycogen Storage Disease Type II,Pompe's Disease,Acid Alpha Glucosidase Deficiency,Acid Alpha-Glucosidase Deficiencies,Acid Maltase Deficiencies,Alpha 1,4 Glucosidase Deficiency,Alpha-1,4-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies, Acid,Alpha-Glucosidase Deficiency,Alpha-Glucosidase Deficiency, Acid,Deficiencies, Acid Alpha-Glucosidase,Deficiencies, Acid Maltase,Deficiencies, Alpha-1,4-Glucosidase,Deficiencies, GAA,Deficiency of Alpha Glucosidase,Deficiency, Acid Alpha-Glucosidase,Deficiency, Acid Maltase,Deficiency, Alpha-1,4-Glucosidase,Deficiency, GAA,Disease, Pompe,Disease, Pompe's,GAA Deficiencies,GSD2s,Generalized Glycogenoses,Glycogenoses, Generalized,Glycogenosis, Generalized,Lysosomal alpha 1,4 Glucosidase Deficiency Disease,Maltase Deficiencies, Acid,Pompes Disease,Type II, Glycogenosis,Type IIs, Glycogenosis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000520 alpha-Glucosidases Enzymes that catalyze the exohydrolysis of 1,4-alpha-glucosidic linkages with release of alpha-glucose. Deficiency of alpha-1,4-glucosidase may cause GLYCOGEN STORAGE DISEASE TYPE II. Acid Maltase,Lysosomal alpha-Glucosidase,Maltase,Maltases,Maltase-Glucoamylase,Neutral Maltase,Neutral alpha-Glucosidase,alpha-Glucosidase,Lysosomal alpha Glucosidase,Maltase Glucoamylase,Neutral alpha Glucosidase,alpha Glucosidase,alpha Glucosidases,alpha-Glucosidase, Lysosomal,alpha-Glucosidase, Neutral

Related Publications

G G D'Ancona, and J Wurm, and C M Croce
December 1995, Nihon rinsho. Japanese journal of clinical medicine,
G G D'Ancona, and J Wurm, and C M Croce
January 1979, Annals of human genetics,
G G D'Ancona, and J Wurm, and C M Croce
March 2002, Current molecular medicine,
G G D'Ancona, and J Wurm, and C M Croce
January 1981, Enzyme,
G G D'Ancona, and J Wurm, and C M Croce
July 1981, American journal of human genetics,
G G D'Ancona, and J Wurm, and C M Croce
January 1980, Cytogenetics and cell genetics,
G G D'Ancona, and J Wurm, and C M Croce
July 2002, Human molecular genetics,
G G D'Ancona, and J Wurm, and C M Croce
January 1983, Cytogenetics and cell genetics,
G G D'Ancona, and J Wurm, and C M Croce
November 1974, Nature,
G G D'Ancona, and J Wurm, and C M Croce
April 1989, Archives of neurology,
Copied contents to your clipboard!