Induction of differentiation in human myeloid leukemic cells by proteolytic enzymes. 1985

E Fibach, and A Treves, and M Kidron, and M Mayer

Exogenous serine proteases were found to induce differentiation in human myeloid leukemic cells from either in vitro established long-term cell lines or in primary cultures of cells derived directly from patients with acute myeloid leukemia. Exposure of the human promyelocytic cell line HL-60 to trypsin, chymotrypsin, or elastase induced the appearance, within 3-6 days, of neutrophilic granulocytes defined by their morphology, their ability to reduce nitroblue tetrazolium, and their efficient phagocytosis of latex particles. Upon further incubation monocyte-like cells appeared. While these cells developed into fully mature macrophages other types of cells disappeared and on day 12 the culture consisted of a pure macrophage population. The inducing effect could be observed when the enzyme was presented alone, whereas a synergistic effect was noted when the protease was added in the presence of subthreshold concentrations of chemicals known to induce differentiation in this cell line such as dimethylsulfoxide, retinoic acid, butyric acid, or hexamethylene bisacetamide. Optimal induction of differentiation by trypsin required a 48 hr continuous exposure to the enzyme. When the protease was removed earlier no appreciable differentiation was noticed. The protease-induced differentiation involved a direct interaction with the cells and was not due to a proteolytic cleavage of a serum component because it could be obtained in serum-free cultures. The enzymatic activity of the protease was needed for its effect on cell maturation: Addition of protease inhibitors such as soybean-trypsin inhibitor or trasylol completely blocked differentiation induced by the proteases but had no effect on differentiation induced by the other inducers. It is still to be determined whether a proteolytic process is a general molecular event in cell differentiation or induction by chemicals involves a mechanism different from that initiated by exogenous proteases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis

Related Publications

E Fibach, and A Treves, and M Kidron, and M Mayer
January 1986, Medical oncology and tumor pharmacotherapy,
E Fibach, and A Treves, and M Kidron, and M Mayer
March 1978, Proceedings of the National Academy of Sciences of the United States of America,
E Fibach, and A Treves, and M Kidron, and M Mayer
February 1984, [Rinsho ketsueki] The Japanese journal of clinical hematology,
E Fibach, and A Treves, and M Kidron, and M Mayer
August 1979, Biochemical and biophysical research communications,
E Fibach, and A Treves, and M Kidron, and M Mayer
July 1987, Toxicology and applied pharmacology,
E Fibach, and A Treves, and M Kidron, and M Mayer
August 1980, Cancer research,
E Fibach, and A Treves, and M Kidron, and M Mayer
February 2000, Cancer research,
E Fibach, and A Treves, and M Kidron, and M Mayer
July 1985, Biochemical and biophysical research communications,
E Fibach, and A Treves, and M Kidron, and M Mayer
December 1976, Cell,
Copied contents to your clipboard!