[Effect of misonidazole (Ro 07-0582) and radiation on the monooxygenases of liver microsomes of the rat]. 1985

F Laurent, and G Akel, and P Canal, and G Soula

Three groups of male Wistar rats were compared: one group received injections of Misonidazole (MISO) (200 mg/kg, i.p.), another group was treated by whole-body irradiation, and the third population received both treatments. Irradiation induced an important decrease of monooxygenase (O-demethylase) activity of hepatic microsomes seven days after the treatment. Cyt. P-450 levels hardly decreased, whereas lipid peroxidation was two-fold three days after irradiation. These different parameters were not modified neither after misonidazole treatment nor after association of irradiation and MISO regimen. The presence of oxygen in liver may explain that a radiosensitizer such as MISO does not increase irradiation damage on liver microsomes enzymes, oxygen preventive activation of MISO by radiation: the nitro groupment of MISO was not reduced in nitroso and amine compounds.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008920 Misonidazole A nitroimidazole that sensitizes normally radio-resistant hypoxic cells to radiation. It may also be directly cytotoxic to hypoxic cells and has been proposed as an antineoplastic. Ro 07-0582,Ro 7-0582,alpha-(Methoxymethyl)-2-nitro-1H-imidazole-1-ethanol,Ro 07 0582,Ro 070582,Ro 7 0582,Ro 70582
D009593 Nitroimidazoles IMIDAZOLES having a nitro moiety. Nitroimidazole
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

F Laurent, and G Akel, and P Canal, and G Soula
January 1980, Strahlentherapie,
F Laurent, and G Akel, and P Canal, and G Soula
March 1981, British journal of cancer,
F Laurent, and G Akel, and P Canal, and G Soula
June 1978, The British journal of cancer. Supplement,
F Laurent, and G Akel, and P Canal, and G Soula
December 1978, International journal of radiation biology and related studies in physics, chemistry, and medicine,
F Laurent, and G Akel, and P Canal, and G Soula
April 1979, British journal of cancer,
F Laurent, and G Akel, and P Canal, and G Soula
April 1978, Journal of the National Cancer Institute,
F Laurent, and G Akel, and P Canal, and G Soula
March 1978, Radiation research,
F Laurent, and G Akel, and P Canal, and G Soula
June 1978, The British journal of cancer. Supplement,
F Laurent, and G Akel, and P Canal, and G Soula
June 1978, The British journal of cancer. Supplement,
F Laurent, and G Akel, and P Canal, and G Soula
January 1981, Journal de pharmacologie,
Copied contents to your clipboard!