Cardiovascular activities of intravenous methionine-enkephalin-Arg6-Phe7 and methionine-enkephalin-Arg6-Gly7-Leu8 in the conscious dog. 1985

G E Sander, and T D Giles

The preproenkephalin A molecule from the adrenal medulla contains the opioid peptides methionine-enkephalin (Met-ENK), leucine-enkephalin (Leu-ENK), methionine-enkephalin-Arg6-Phe7 (heptapeptide), and methionine-enkephalin-Arg6-Gly7-Leu8 (octapeptide). In the conscious, chronically instrumented dog, Met-ENK and Leu-ENK simultaneously increase heart rate and systemic arterial pressure following intravenous administration. In 19 of 23 dogs, heptapeptide produced a response identical to Met-ENK and Leu-ENK, which was inhibited by naloxone but unaffected by the dipeptidyl carboxypeptidase inhibitor SQ20881. However, in four dogs, heptapeptide produced only a fall in systemic pressure associated with an increase in heart rate despite characteristic Met-ENK responses in the same dogs; naloxone did not appear to alter this hypotensive response. Octapeptide produced slight increases in systemic pressure and heart rate. These data suggest that heptapeptide may possess intrinsic cardiovascular activity at opiate receptors; however, in certain dogs, non-opiate mechanisms, perhaps histamine release, may predominate.

UI MeSH Term Description Entries
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

G E Sander, and T D Giles
October 2016, Neuroscience,
G E Sander, and T D Giles
April 2003, Anatomy and embryology,
Copied contents to your clipboard!