Isolation of recombinant cDNAs encoding chicken erythroid delta-aminolevulinate synthase. 1985

M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel

We report the isolation of cDNA clones encoding delta-aminolevulinate synthase (ALA synthase; EC 2.3.1.37), the first enzyme in the heme biosynthetic pathway in animal cells. The gene was isolated from a chicken erythroid cDNA library prepared in the bacteriophage lambda fusion/expression vector gt11, using rabbit antibody raised against the relatively abundant chicken liver enzyme. The chicken liver and red cell ALA synthase isozymes share substantial crossreactivity to the antibody, thereby allowing isolation of the erythroid-specific gene by using the heterologous antibody in immune screening of the red cell cDNA library. Preliminary analysis documenting the tissue specificity of transcription indicates that the enzyme is encoded by a highly homologous set of messages, which appear to differ in size in various avian tissues. From analysis using strand-specific RNA probes, it appears that the different ALA synthase mRNAs detected may be transcribed from a family of genes that are closely related in nucleotide sequence and are each regulated in a developmentally specific manner.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000624 5-Aminolevulinate Synthetase An enzyme of the transferase class that catalyzes condensation of the succinyl group from succinyl coenzyme A with glycine to form delta-aminolevulinate. It is a pyridoxyal phosphate protein and the reaction occurs in mitochondria as the first step of the heme biosynthetic pathway. The enzyme is a key regulatory enzyme in heme biosynthesis. In liver feedback is inhibited by heme. EC 2.3.1.37. Aminolevulinic Acid Synthetase,delta-Aminolevulinate Synthase,5-Aminolevulinate Synthase,delta-Aminolevulinic Acid Synthetase,5 Aminolevulinate Synthase,5 Aminolevulinate Synthetase,Acid Synthetase, Aminolevulinic,Acid Synthetase, delta-Aminolevulinic,Synthase, 5-Aminolevulinate,Synthase, delta-Aminolevulinate,Synthetase, 5-Aminolevulinate,Synthetase, Aminolevulinic Acid,Synthetase, delta-Aminolevulinic Acid,delta Aminolevulinate Synthase,delta Aminolevulinic Acid Synthetase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
April 1994, Nucleic acids research,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
June 1983, Biochemical and biophysical research communications,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
January 1988, The International journal of biochemistry,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
July 1993, Journal of biochemistry,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
December 1990, Nucleic acids research,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
February 1986, Archives of biochemistry and biophysics,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
February 1997, Cellular and molecular biology (Noisy-le-Grand, France),
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
August 1995, Blood,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
M Yamamoto, and N S Yew, and M Federspiel, and J B Dodgson, and N Hayashi, and J D Engel
September 1999, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!