Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. 1985

B A Bridges, and R Woodgate

When excision-deficient Escherichia coli carrying umuC or umuD alleles were exposed to visible light several hours after ultraviolet irradiation, base-pair-substitution mutations were induced in these normally non-UV-mutable bacteria. It is argued that delayed photoreversal of pyrimidine dimers removes blocks to DNA replication and allows the "survival" and expression of misincorporated bases. A model for UV mutagenesis is proposed with two steps: (i) misincorporation opposite a photoproduct, which can be mediated directly by RecA protein, and (ii) bypass, only the latter process requiring umuD+ and umuC+ alleles. Basal levels of gene products are sufficient for at least some misincorporation events, although induced levels of umuD and umuC gene products are necessary for the bypass step. umuC bacteria containing the recA441 allele showed a greater yield of mutants, and those containing recA430 a reduced yield, following delayed photoreversal. The lexA51 allele (which results in constitutive derepression of RecA protein production) did not significantly alter the yield of mutants but caused them to appear marginally sooner in a recA441 umuC strain. These results emphasize that the nature of the RecA protein and not its concentration is paramount in determining the level of misincorporation. Experiments with recA441 umuC bacteria at 43 degrees C and 30 degrees C suggest that the misincorporation effect is unlikely to be attributable to cleavage of a DNA binding protein such as a repressor or a component of the polymerase complex. Moreover, misincorporation seems to occur without the need for induced synthesis of any other protein under recA control.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

B A Bridges, and R Woodgate
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
B A Bridges, and R Woodgate
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
B A Bridges, and R Woodgate
March 1988, Proceedings of the National Academy of Sciences of the United States of America,
B A Bridges, and R Woodgate
January 2008, Proceedings of the National Academy of Sciences of the United States of America,
B A Bridges, and R Woodgate
May 1992, Journal of bacteriology,
B A Bridges, and R Woodgate
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!