9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties. 1979

J C Henquin, and H P Meissner, and M Preissler

The effects of 9-aminoacridine and tetraethylammonium on insulin release and rubidium efflux from perifused rat islets were investigated and correlated with their effects on the electrical properties of mouse B cells studied with microelectrode techniques. 9-Aminoacridine (0.05--1 mmol/l) and tetraethylammonium (2--40 mmol/l) produced a dose-dependent, reversible potentiation of glucose-stimulated insulin release. This effect was rapid, affected both phases of secretion and was maximum in the presence of 6 mmol/l glucose, but no longer significant at 20 mmol/l glucose. It was unaltered by atropine or propanolol, and abolished by mannoheptulose or omission of extracellular calcium. 9-Aminoacridine, but not tetraethylammonium, also induced insulin release in the absence of glucose stimulation. Neither drug modified glucose metabolism in islet cells and only 9-aminoacridine increased 45Ca2+ uptake. In the presence of 0, 3 or 6 mmol/l glucose, but no longer at 20 mmol/l glucose, 9-aminoacridine and tetraethylammonium reduced the rate of 86Rb+ efflux from the islets. Both drugs also slightly reduced 86Rb+ uptake by islet cells. In the presence of 11 mmol/l glucose, 9-aminoacridine reduced the amplitude and the duration of the polarization phases between the bursts of electrical activity; concomitantly these periods of spike activity were markedly prolonged. At lower glucose concentrations (3 or 7 mmol/l), 9-aminoacridine progressively depolarized B cells and induced electrical activity in otherwise silent cells. Tetraethylammonium also suppressed the repolarization phases between the bursts of spikes in the presence of a stimulating concentration of glucose. At low glucose, tetraethylammonium produced only a limited and not maintained depolarization. These results show that a reduction of the potassium permeability in pancreatic B cells potentiates the insulin-releasing effect of glucose and may even stimulate secretion. They also suggest that the initial depolarizing effect of glucose is due to a reduction of the potassium permeability, whereas the repolarization at the end of each burst of electrical activity is mediated, at least in part, by an increase in the potassium permeability of B cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D008356 Mannoheptulose A 7-carbon keto sugar having the mannose configuration. Mannoketoheptose
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005260 Female Females

Related Publications

J C Henquin, and H P Meissner, and M Preissler
March 1979, The Journal of physiology,
J C Henquin, and H P Meissner, and M Preissler
January 1980, Hormone and metabolic research. Supplement series,
J C Henquin, and H P Meissner, and M Preissler
January 1983, Reviews of physiology, biochemistry and pharmacology,
J C Henquin, and H P Meissner, and M Preissler
November 1987, Pflugers Archiv : European journal of physiology,
J C Henquin, and H P Meissner, and M Preissler
May 1984, The American journal of physiology,
J C Henquin, and H P Meissner, and M Preissler
April 1990, Agents and actions,
J C Henquin, and H P Meissner, and M Preissler
April 1987, The Journal of physiology,
Copied contents to your clipboard!