The Escherichia coli O6-methylguanine-DNA methyltransferase does not repair promutagenic O6-methylguanine residues when present in Z-DNA. 1985

S Boiteux, and R Costa de Oliveira, and J Laval

The repair of O6-methylguanine present in N-methylnitrosourea (MNU)-treated alternating polynucleotides MNU-poly(dG-dC) X poly(dG-dC) and MNU-poly(dG-me5dC) X poly(dG-me5dC] was investigated using O6-methylguanine-DNA methyltransferase purified from Escherichia coli. Both modified polynucleotides are equally good substrates for the DNA methyltransferase when they are in the B-form. The substrate properties of the MNU-treated polynucleotides do not differ from those of MNU-treated DNA. One of these modified polynucleotides, MNU-poly(dG-me5dC) X (dG-me5dC), can adopt the Z-conformation under physiological conditions. The conformational transition of the poly(dG-me5dC) X poly(dG-me5dC) from the B-form to the Z-form was monitored by the modification of its spectroscopic properties and by the specific binding of antibodies raised against Z-DNA. The O6-methylguanine residues are repaired in MNU-poly(dG-me5dC) X poly(dG-me5dC) in B-form. At variance, the conversion of this template to the Z-form completely inhibits the repair of the O6-methylguanine residues. The cooperative transition from the Z- to the B-form of MNU-poly(dG-me5dC) X poly(dG-me5dC), mediated by intercalating drugs such as ethidium bromide, restores the ability of MNU-poly(dG-me5dC) X poly(dG-me5dC) to be substrate for the transferase. These results imply that the promutagenic DNA lesion O6-methylguanine persists in Z-DNA fragments and suggest that DNA conformation modulates the extent of DNA repair and, as a result, plays an important role in determining the mutagenic potency of chemical carcinogens.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D006147 Guanine
D019853 O(6)-Methylguanine-DNA Methyltransferase An enzyme that transfers methyl groups from O(6)-methylguanine, and other methylated moieties of DNA, to a cysteine residue in itself, thus repairing alkylated DNA in a single-step reaction. EC 2.1.1.63. Methylated-DNA-Protein-Cysteine S-Methyltransferase,O(6)-AGT,O(6)-Methylguanine Methyltransferase,DNA Repair Methyltransferase I,DNA Repair Methyltransferase II,Guanine-O(6)-Alkyltransferase,O(6)-Alkylguanine-DNA Alkyltransferase,O(6)-MeG-DNA Methyltransferase,O(6)-Methylguanine DNA Transmethylase,Methylated DNA Protein Cysteine S Methyltransferase,S-Methyltransferase, Methylated-DNA-Protein-Cysteine

Related Publications

S Boiteux, and R Costa de Oliveira, and J Laval
November 1982, The Journal of biological chemistry,
S Boiteux, and R Costa de Oliveira, and J Laval
April 1988, Journal of molecular biology,
S Boiteux, and R Costa de Oliveira, and J Laval
February 1998, Biochemistry,
S Boiteux, and R Costa de Oliveira, and J Laval
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
S Boiteux, and R Costa de Oliveira, and J Laval
October 1982, Journal of bacteriology,
S Boiteux, and R Costa de Oliveira, and J Laval
June 1993, Journal of molecular biology,
S Boiteux, and R Costa de Oliveira, and J Laval
December 1982, Biochemical and biophysical research communications,
S Boiteux, and R Costa de Oliveira, and J Laval
January 1982, The EMBO journal,
S Boiteux, and R Costa de Oliveira, and J Laval
January 2005, Nucleic acids research,
Copied contents to your clipboard!