The crossbridge mechanism of muscular contraction and its implications. 1985

H E Huxley

The basic features of the sliding-filament crossbridge mechanism are reviewed briefly, and some recent objections involving supposed changes in A-filament lengths are discussed. X-ray diffraction studies on live muscles show no sign of a decrease in axial spacing during contraction, and it is unlikely that a stepwise shortening or depolymerization of A-filaments would provide a plausible contraction mechanism. Thus electron microscope observations which occasionally are reported to show such length changes probably arise from experimental artefact, of which there are many sources. The factors which govern tension and speed in muscle contraction are described. Since all vertebrate striated muscles which have been studied have A-bands of at least approximately the same length, they are likely to have rather similar maximum isometric tensions. The design probably matches this tension to the strength of the filaments themselves. The large variations in shortening speeds between different muscles and different animals arise because of corresponding variations in the rates of particular steps in the crossbridge cycle and in the rate of ATP splitting by the actin-myosin complex involved. Questions concerning the nature and the speed of the activation mechanism are also discussed.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D006737 Horseshoe Crabs An arthropod subclass (Xiphosura) comprising the North American (Limulus) and Asiatic (Tachypleus) genera of horseshoe crabs. Crabs, Horseshoe,Limulus,Limulus polyphemus,Tachypleus,Xiphosura,Crab, Horseshoe,Horseshoe Crab,Xiphosuras
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate

Related Publications

H E Huxley
November 1972, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
H E Huxley
May 1961, The American journal of medicine,
H E Huxley
September 1960, Arquivos de neuro-psiquiatria,
H E Huxley
September 1951, Medicina,
H E Huxley
January 1989, Annual review of physiology,
H E Huxley
January 1965, Essays in biochemistry,
H E Huxley
May 1985, Biophysical journal,
H E Huxley
August 2019, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!