Characterization of rat cytochrome P-450MC synthesized in Saccharomyces cerevisiae. 1985

T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa

Rat cytochrome P-450MC cDNA was expressed in Saccharomyces cerevisiae AH22, SHY3 and NA87-11A cells under the control of the yeast ADH1 promoter and terminator. Although the three yeast strains transformed with the constructed expression plasmid, pAMC1, contained approximately three copies of the plasmid, the levels of both P-450MC mRNA and the corresponding protein in the AH22 cells carrying plasmid pAMC1 were 1.4- to 1.7-fold and 2-fold higher than in the other two strains, respectively. The P-450MC protein was purified from the microsomal fraction of AH22 cells carrying pAMC1 by a rapid purification method. The apparent molecular weight, chromatographic behavior, spectral properties, substrate specificity and immunochemical properties of the purified P-450MC protein were indistinguishable from those of rat liver P-450MC-I and P-450MC-II (Sasaki, T., et al. (1984) J. Biochem. 96, 117-126). The NH2-terminal amino acid sequence of the purified protein up to 10 residues was the same as those of P-450MC-I and P-450MC-II. In addition, HPLC analysis of the microsomal fraction of AH22 cells containing pAMC1 indicated that the synthesized P-450MC protein corresponds to P-450MC-II, but not P-450MC-I. With another purification method, we obtained the cleaved P-450MC protein which lacked the NH2-terminal 30 amino acids of intact P-450MC. The spectral properties and monooxygenase activities towards benzo(a)pyrene and 7-ethoxycoumarin of the cleaved P-450MC were nearly the same as those of intact P-450MC.

UI MeSH Term Description Entries
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry

Related Publications

T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
February 1986, DNA (Mary Ann Liebert, Inc.),
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
October 1986, FEBS letters,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
September 1986, Proceedings of the National Academy of Sciences of the United States of America,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
March 1983, Mutation research,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
January 1988, Methods in enzymology,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
December 1977, Mutation research,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
March 1984, Nucleic acids research,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
January 1986, Gene,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
January 1978, Methods in enzymology,
T Sakaki, and K Oeda, and M Miyoshi, and H Ohkawa
January 1981, Bollettino della Societa italiana di biologia sperimentale,
Copied contents to your clipboard!