An amino acid sequence common to both cartilage proteoglycan and link protein. 1985

P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker

Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. In the course of determining the primary structure of link protein, two peptides produced by digestion of rat chondrosarcoma link protein with trypsin or chymotrypsin have been selectively purified by immunoaffinity chromatography on a column of monoclonal anti-link protein antibody (8A4) immobilized to Sepharose 4B. These peptides have been sequenced using the double-coupling dimethylaminoazobenzene isothiocyanate/phenyl isothiocyanate procedure. A consensus sequence, Cys-X-Ala-Gly-Trp-Leu-X-Asp-Gly-Ser-Val-X-Tyr-Pro-Ile-X-X-Pro, obtained by comparing the affinity-isolated tryptic peptide with the affinity-isolated chymotryptic peptide and an overlapping tryptic peptide, shows homology with a sequence obtained from the NH2-terminal of a CNBr peptide from proteo glycan core protein of bovine nasal cartilage: Ser-Ser-Ala-Gly-Trp-Leu-Ala-Asp-Arg-Ser-Val-Arg-Tyr-Pro-Ile-Ser-. We suggest that the common sequence is structurally important to the function of these proteins and may be involved in the binding of both link protein and proteoglycan to hyaluronic acid.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002813 Chondrosarcoma A slowly growing malignant neoplasm derived from cartilage cells, occurring most frequently in pelvic bones or near the ends of long bones, in middle-aged and old people. Most chondrosarcomas arise de novo, but some may develop in a preexisting benign cartilaginous lesion or in patients with ENCHONDROMATOSIS. (Stedman, 25th ed) Chondrosarcomas
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
December 1987, The Journal of biological chemistry,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
January 1987, Methods in enzymology,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
June 1986, Proceedings of the National Academy of Sciences of the United States of America,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
September 1981, The Biochemical journal,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
May 1985, The Biochemical journal,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
September 2006, The Biochemical journal,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
March 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
December 1987, The Biochemical journal,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
June 1995, The Biochemical journal,
P J Neame, and J P Périn, and F Bonnet, and J E Christner, and P Jollès, and J R Baker
November 1990, Genomics,
Copied contents to your clipboard!