A coupled in vitro system for the formation and packaging of concatemeric phage T1 DNA. 1985

J Liebeschuetz, and P J Davison, and D A Ritchie

Extracts derived from E. coli cells infected non-permissively with phage T1 amber mutants were used in an in vitro system to investigate the packaging of T1 DNA into phage heads. The standard extract used infections with amber mutants in genes 1 and 2 (g1- g2-) which are defective in T1 DNA synthesis but can synthesis the proteins required for particle morphogenesis. g1- g2- extracts packaged T1+ virion DNA molecules with an efficiency of 3 X 10(5) pfu/micrograms DNA. Extracts from cells infected with phage also defective in DNA synthesis but carrying additional mutations in genes 3.5 or 4 which are required for concatemer formation in vivo (g1- g3.5- and g1- g4- extracts) package T1 virion DNA at substantially lower efficiencies. Analysis of the DNA products from these in vitro reaction showed that concatemeric DNA is formed very efficiently by g1- g2- extracts but not by g1- g3.5- or g1- g4- extracts. These results are interpreted as evidence that the T1 in vitro DNA packaging system primarily operates in a similar manner to the in vivo headful mechanism. This is achieved in vitro by the highly efficient conversion of T1 virion DNA into concatemers which are then packaged with a much lower efficiency into heads to form infectious particles. A secondary pathway for packaging T1 DNA into heads and unrelated to the headful mechanism may also exist.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles

Related Publications

J Liebeschuetz, and P J Davison, and D A Ritchie
April 1992, Gene,
J Liebeschuetz, and P J Davison, and D A Ritchie
December 1978, The Journal of general virology,
J Liebeschuetz, and P J Davison, and D A Ritchie
January 1974, Journal of supramolecular structure,
J Liebeschuetz, and P J Davison, and D A Ritchie
June 1978, Virology,
J Liebeschuetz, and P J Davison, and D A Ritchie
May 1977, Virology,
J Liebeschuetz, and P J Davison, and D A Ritchie
June 1974, Proceedings of the National Academy of Sciences of the United States of America,
J Liebeschuetz, and P J Davison, and D A Ritchie
February 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J Liebeschuetz, and P J Davison, and D A Ritchie
February 1984, Virology,
J Liebeschuetz, and P J Davison, and D A Ritchie
September 1997, Genes to cells : devoted to molecular & cellular mechanisms,
Copied contents to your clipboard!