Transmission and expression of mutations to nalidixic acid resistance among products of protoplast fusion crosses of Candida albicans. 1985

M A Haught, and A Sarachek

Earlier studies suggested that heritable resistance to nalidixic acid (Nal) induced in the asexual, pathogenic yeast Candida albicans by growth on Nal results from mitochondrial mutation. To determine conclusively whether mutations to Nal resistance are cytoplasmic or nuclear, several stable Nal-resistant (Nalr) mutants exhibiting distinctive differences in degrees of Nal resistance were obtained from each of two doubly auxotrophic strains (Ade-, Thr- and Arg-, His-), both derived from the same wild-type stock. Inheritance of Nal resistance was then assessed in a series of protoplast fusion crosses between complementing auxotrophs. The initial, intact cellular products of a fusion cross are prototrophic heterokaryons which frequently assort single parental nuclei into monokaryotic blastospores containing biparental cytoplasms. Occasional karyogamy within heterokaryons also yields prototrophic hybrid monokaryons which can undergo recombinations for chromosomal markers through spontaneous or induced mitotic crossing-over. Segregation and expression of Nal resistance among non-hybrid, parental-type monokaryons from Nalr X Nals heterokaryons showed that Nalr mutations are nuclear and that their expressions are not noticeably affected by admixture of cytoplasms of sensitive and resistant parental strains. Analyses of heterokaryons and hybrid monokaryons from Nalr X Nals and Nalr X Nalr crosses demonstrated that Nal resistance is recessive to sensitivity, and that independent Nalr mutations arise at one gene in the Ade-, Thr- strain and at a separate, complementing single gene in the Arg-, His- strain. Prior work demonstrated that induction of Nalr mutations in wild-type C. albicans depends profoundly on the (i) carbon and nitrogen, (ii) growth temperature, (iii) contact with particular metabolic inhibitors and (iv) division stage of cells during exposure to Nal. The present observations indicate that the character of cellular auxotrophies can determine the genetic loci at which Nalr mutations can be recovered.

UI MeSH Term Description Entries
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph

Related Publications

M A Haught, and A Sarachek
January 1982, Journal of general microbiology,
M A Haught, and A Sarachek
January 1994, FEMS microbiology letters,
M A Haught, and A Sarachek
September 1979, Mycopathologia,
M A Haught, and A Sarachek
November 2023, mBio,
M A Haught, and A Sarachek
March 1976, Antimicrobial agents and chemotherapy,
M A Haught, and A Sarachek
November 1981, Journal of bacteriology,
M A Haught, and A Sarachek
January 1986, Results and problems in cell differentiation,
Copied contents to your clipboard!