Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. 1985

M H Whitnall, and E Mezey, and H Gainer

Vasopressin (VP) potentiates the effect of corticotropin-releasing factor (CRF) on the secretion of adrenocorticotropic hormone (ACTH) from anterior pituitary cells in vitro, and both CRF and VP have been found in portal blood. These data support the hypothesis that VP acts synergistically with CRF to cause the secretion of ACTH in vivo but the origin of the CRF and VP, and the physiology of their release, have not been precisely defined. Parvocellular cell bodies in the paraventricular nucleus (PVN) which project to the external zone of the median eminence can be stained for both CRF and VP after adrenalectomy, and there is light microscopic immunocytochemical evidence that neurophysin (NP) may be located within some of the CRF-containing axons. Electron microscopic immunocytochemical studies have demonstrated the presence of CRF, VP and its 'carrier' protein, VP-associated neurophysin (NP-VP) in 100-nm neurosecretory vesicles (NSVs) in axons terminating near the portal capillary plexus in the external zone of the median eminence. If these peptides are extensively co-localized in the same NSVs in the median eminence, then coordinate secretion of CRF and VP in vivo is obligatory, at least in some physiological circumstances. We demonstrate in this report, using post-embedding electron microscopic immunocytochemistry on serial ultrathin sections, that CRF, VP and NP-VP are contained not only in the same axons and terminals, but in the same 100-nm NSVs in the median eminence of both normal and adrenalectomized rats. In addition, in the normal rat median eminence 44% of the CRF-positive axons and terminals stained strongly for VP and NP-VP, whereas in the adrenalectomized rat virtually all the CRF-positive structures in the median eminence showed strong staining for VP and NP-VP, indicating a transformation of one subpopulation of CRF-positive axons and terminals by adrenalectomy.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D008473 Median Eminence Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND. Eminentia Mediana,Medial Eminence,Eminence, Medial,Eminence, Median,Eminences, Medial,Eminentia Medianas,Medial Eminences,Mediana, Eminentia,Medianas, Eminentia
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M H Whitnall, and E Mezey, and H Gainer
January 1980, Neuroendocrinology,
M H Whitnall, and E Mezey, and H Gainer
January 1970, Progress in brain research,
Copied contents to your clipboard!