Interaction of methionine-specific tRNAs from Escherichia coli with immobilized elongation factor Tu. 1985

W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl

The interaction of three different Met-tRNAsMet from E. coli with bacterial elongation factor (EF) Tu X GTP was investigated by affinity chromatography. Met-tRNAfMet which lacks the base pair at the end of the acceptor stem binds only weakly to EF-Tu X GTP, while Met-tRNAmMet has a high affinity for the elongation factor. A modified Met-tRNAfMet which has a C1-G72 base pair binds much more strongly to immobilized EF-Tu X GTP than the native aminoacyl(aa)-tRNA with non-base-paired C1A72 at this position, demonstrating that the base pair including the first nucleotide in the tRNA is one of the essential structural requirements for the aa-tRNA X EF-Tu X GTP ternary complex formation.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D012358 RNA, Transfer, Met A transfer RNA which is specific for carrying methionine to sites on the ribosomes. During initiation of protein synthesis, tRNA(f)Met in prokaryotic cells and tRNA(i)Met in eukaryotic cells binds to the start codon (CODON, INITIATOR). Initiator tRNA,Methionine-Specific tRNA,Methionine-Specific tRNAm,RNA, Transfer, Initiator,Transfer RNA, Met,tRNA(f)Met,tRNA(i)Met,tRNA(m)Met,tRNAMet,tRNA(Met),Met Transfer RNA,Methionine Specific tRNA,Methionine Specific tRNAm,RNA, Met Transfer,tRNA, Initiator,tRNA, Methionine-Specific,tRNAm, Methionine-Specific
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
September 1996, The Journal of biological chemistry,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
June 2004, Mitochondrion,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
January 1983, FEBS letters,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
January 2012, The Journal of biological chemistry,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
April 1984, The Journal of biological chemistry,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
February 1997, Journal of biochemical and biophysical methods,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
February 1986, Journal of bacteriology,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
February 1996, European journal of biochemistry,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
W Fischer, and T Doi, and M Ikehara, and E Ohtsuka, and M Sprinzl
November 1981, Journal of molecular biology,
Copied contents to your clipboard!