Pyruvate dehydrogenase complex of Escherichia coli. Thiamin pyrophosphate and NADH-dependent hydrolysis of acetyl-CoA. 1985

C A CaJacob, and G R Gavino, and P A Frey

When the pyruvate dehydrogenase complex of Escherichia coli is reduced by NADH and alkylated by N-[14C]ethylmaleimide, 19-20 nmol of N-[14C]ethylmaleimide are bound per mg of complex. This is in accord with the presence of 10 nmol of functional lipoyl moieties per mg of complex as previously reported. Thus the lipoyl groups are all coupled via dihydrolipoyl dehydrogenase (E3) to reduction by NADH. As previously reported, the complex reductively acetylated by pyruvate and containing 10 nmol of acetyldihydrolipoyl groups per mg of complex produces about 5 nmol of NADH/mg of complex when challenged with CoA and NAD+ in a fast burst. Under anaerobic conditions a slow secondary process extending over 1 h produces another 5 nmol of NADH/mg of complex. The relationship between the two classes of acetyldihydrolipoyl groups is unknown but could reflect either intrinsic structural inequivalence of lipoyl groups (2/subunit of dihydrolipoyl transacetylase, E2). Alternatively, the acetyldihydrolipoyl groups may undergo reversible isomerization to structurally distinct forms. The purified complex catalyzes the cleavage of acetyl-CoA by two processes. The trace contaminant phosphotransacetylase catalyzes cleavage by phosphate to acetyl-P. The complex itself catalyzes hydrolysis of acetyl-CoA in a reaction that requires all three enzymes, NADH, thiamin pyrophosphate, and the lipoyl groups of E2. The hydrolytic pathway evidently involves overall reversal of the reaction, leading ultimately to the formation of acetyl-thiamin pyrophosphate, which undergoes hydrolysis to acetate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D004228 Dithionitrobenzoic Acid A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate. 5,5'-Dithiobis(2-nitrobenzoic Acid),DTNB,Ellman's Reagent,5,5'-Dithiobis(nitrobenzoate),Acid, Dithionitrobenzoic,Ellman Reagent,Ellmans Reagent,Reagent, Ellman's
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000105 Acetyl Coenzyme A Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl CoA,Acetyl-CoA,CoA, Acetyl,Coenzyme A, Acetyl
D013835 Thiamine Pyrophosphate The coenzyme form of Vitamin B1 present in many animal tissues. It is a required intermediate in the PYRUVATE DEHYDROGENASE COMPLEX and the KETOGLUTARATE DEHYDROGENASE COMPLEX. Cocarboxylase,Thiamine Diphosphate,Berolase,Pyrophosphate, Thiamine

Related Publications

C A CaJacob, and G R Gavino, and P A Frey
March 1984, The Journal of biological chemistry,
C A CaJacob, and G R Gavino, and P A Frey
March 1999, Biochemical and biophysical research communications,
C A CaJacob, and G R Gavino, and P A Frey
July 1975, Biochemical and biophysical research communications,
C A CaJacob, and G R Gavino, and P A Frey
January 1982, Methods in enzymology,
C A CaJacob, and G R Gavino, and P A Frey
October 1978, The Journal of biological chemistry,
C A CaJacob, and G R Gavino, and P A Frey
May 1982, Biochemistry,
C A CaJacob, and G R Gavino, and P A Frey
October 1974, European journal of biochemistry,
Copied contents to your clipboard!