Nickel controls the reversible anaerobic activation/inactivation of the Desulfovibrio gigas hydrogenase by the redox potential. 1985

R M Mege, and C Bourdillon

An electrochemical method of hydrogenase activity measurement is developed. It permits a new approach to the activation/inactivation process of the Desulfovibrio gigas hydrogenase. A monolayer of hydrogenase is grafted onto a glassy carbon electrode which is both the support of the enzyme and the detector of the activity. The physicochemical composition of the enzyme microenvironment is thus well defined and easily controlled by the electrode potential. Successive periods of inactivation and activation are applied to the same hydrogenase molecules, thus the activity can be correlated to the chronology of the experiments. We distinguish two kinds of activation/inactivation processes. The first one, already described for the enzyme stored for some months in aerobic conditions, is a slow activation by molecular hydrogen or a reducing medium (half-reaction time = 2 h). The second one is an anaerobic inactivation by an oxidizing potential. This first order inactivation (half-reaction time = 10 min) is fully reversible. This modulation of the activity level is controlled by an Ni(III)/Ni(II) redox couple (Eh = -455 mV/calomel-saturated KCl electrode at pH 8.3) involving one electron and one proton. This work proposes an explanation for the activation of the hydrogenase taking into account the participation of an [Fe-S] cluster and of the nickel atom.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003901 Desulfovibrio A genus of gram-negative, anaerobic, rod-shaped bacteria capable of reducing sulfur compounds to hydrogen sulfide. Organisms are isolated from anaerobic mud of fresh and salt water, animal intestines, manure, and feces.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006864 Hydrogenase An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis. Ferredoxin Hydrogenase,H2-Oxidizing Hydrogenase,Hydrogenlyase,H2 Oxidizing Hydrogenase,Hydrogenase, Ferredoxin,Hydrogenase, H2-Oxidizing
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

R M Mege, and C Bourdillon
February 1983, European journal of biochemistry,
R M Mege, and C Bourdillon
May 1982, Biochemical and biophysical research communications,
R M Mege, and C Bourdillon
October 1984, The Journal of biological chemistry,
R M Mege, and C Bourdillon
October 1982, Biochemical and biophysical research communications,
R M Mege, and C Bourdillon
November 2008, Bioelectrochemistry (Amsterdam, Netherlands),
R M Mege, and C Bourdillon
May 1978, Biochemical and biophysical research communications,
R M Mege, and C Bourdillon
February 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!