Neuroimmunomodulatory interactions of norepinephrine and serotonin. 1985

R F Walker, and E E Codd

Monoamine neuroleptics alter rodents responses to immunization, suggesting that norepinephrine (NE) and serotonin (5HT) are neuroimmunomodulatory in these animals. Although endocrine factors participate in their mechanism(s) of action, recent studies suggest that NE and 5HT also interact more directly with immunocompetent cells. This review provides an overview of evidence for a direct regulatory link between the nervous and immune systems and further speculates on the process by which NE and 5HT realize in part, their neuroimmunomodulatory potential. Anatomical data show that noradrenergic fibers of the sympathetic nervous system innervate lymphoid organs providing a channel of communication between neurons and lymphocytes. Presumably neural signals transmitted by NE are received by platelets that in turn, transduce them via 5HT into immunomodulatory messages. It is proposed that NE alters the capacity of platelets to sequester and/or catabolize 5HT, thus regulating its physiologically active pool in the plasma. Macrophages possess a 5HT uptake system, the kinetic properties of which make them sensitive to changes in plasma levels of the amine. Thus, through its ability to regulate plasma levels of 5HT, an immunosuppressive amine with access to macrophages, the nervous system can influence cells involved in antigen recognition. Support for this hypothetical immunomodulatory mechanism is gleaned from clinical and experimental studies. For example, individuals suffering emotional trauma are more susceptible than others to developing physical illness. It is of interest that platelet 5HT pharmacodynamics are often abnormal in patients with psychological disorders characterized by catecholamine deficits. Similar platelet changes have been achieved experimentally by treating rats with catecholamine antimetabolites. Additional support for the hypothesis derives from aging research since 'monoamine imbalance' and immune dysfunction are co-characteristics of senescence. In aging rodents and humans, central catecholamine deficits are associated with a decreased platelet affinity for 5HT and an increased plasma content of 5HT. Thus, emotional, spontaneous (age-related), or experimental changes in monoamine homeostasis have the potential to increase the risk of disease in affected individuals. Perhaps part of this effect results from endocrine perturbations associated with the trauma. However, a direct interaction between the nervous and immune systems involving monoamines is also possible, and a need for future study of this potentially significant mechanism for neuroimmunomodulation is indicated.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007153 Immunologic Deficiency Syndromes Syndromes in which there is a deficiency or defect in the mechanisms of immunity, either cellular or humoral. Antibody Deficiency Syndrome,Deficiency Syndrome, Immunologic,Deficiency Syndromes, Antibody,Deficiency Syndromes, Immunologic,Immunologic Deficiency Syndrome,Immunological Deficiency Syndromes,Antibody Deficiency Syndromes,Deficiency Syndrome, Antibody,Deficiency Syndrome, Immunological,Deficiency Syndromes, Immunological,Immunological Deficiency Syndrome,Syndrome, Antibody Deficiency,Syndrome, Immunologic Deficiency,Syndrome, Immunological Deficiency,Syndromes, Antibody Deficiency,Syndromes, Immunologic Deficiency,Syndromes, Immunological Deficiency
D008221 Lymphoid Tissue Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS. Lymphatic Tissue,Lymphatic Tissues,Lymphoid Tissues,Tissue, Lymphatic,Tissue, Lymphoid,Tissues, Lymphatic,Tissues, Lymphoid
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

R F Walker, and E E Codd
January 1991, Polish journal of pharmacology and pharmacy,
R F Walker, and E E Codd
April 1986, Journal of hypertension,
R F Walker, and E E Codd
January 1979, Pharmacology, biochemistry, and behavior,
R F Walker, and E E Codd
January 2008, Neuroimmunomodulation,
R F Walker, and E E Codd
January 1968, Advances in pharmacology,
R F Walker, and E E Codd
January 2019, Handbook of experimental pharmacology,
R F Walker, and E E Codd
January 1968, Advances in pharmacology,
R F Walker, and E E Codd
January 1987, Advances in experimental medicine and biology,
Copied contents to your clipboard!