Evidence that the ribosomal DNA genes of yeast are not on chromosome I. 1979

T D Petes, and S Smolik-Utlaut

Several workers have reported that most of the ribosomal DNA genes (rDNA) of the yeast Saccharomyces cerevisiae are located on chromosome I. More recently, data indicating that the yeast rDNA genes are located on chromosome XII has been presented. In this report, we present additional evidence indicating that most of the yeast rDNA genes are not on chromosome I. Starting from a diploid yeast strain, we isolated ten strains which were monosomic (2n-1) for chromosome I. We found that each of these ten strains contained two copies of the rDNA-containing chromosome. In addition, we show that the earlier evidence indicating that the yeast rDNA genes were on chromosome I cannot be explained by a difference in the yeast strains which were used in the different experiments.

UI MeSH Term Description Entries
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

T D Petes, and S Smolik-Utlaut
January 1979, Proceedings of the National Academy of Sciences of the United States of America,
T D Petes, and S Smolik-Utlaut
July 1975, Biochemical and biophysical research communications,
T D Petes, and S Smolik-Utlaut
March 1995, Science (New York, N.Y.),
T D Petes, and S Smolik-Utlaut
May 1974, Experimental cell research,
T D Petes, and S Smolik-Utlaut
January 1978, Cold Spring Harbor symposia on quantitative biology,
T D Petes, and S Smolik-Utlaut
April 1978, Journal of bacteriology,
T D Petes, and S Smolik-Utlaut
September 1977, Biochimica et biophysica acta,
Copied contents to your clipboard!