The role of endogenous gonadotropin-releasing hormone in the control of luteinizing hormone and testosterone secretion in the juvenile male monkey, Macaca fascicularis. 1985

J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner

To determine what changes occur in the activity of gonadotropin-releasing hormone (GnRH) neurons during pubertal development in primate species we tested the hypotheses that there are morphologic differences between GnRH-containing neurons in juvenile versus adult monkeys, and the low activity of the reproductive axis is governed by hypothalamic GnRH release in monkeys prior to puberty. We removed the brains from 5 juvenile and 5 adult male monkeys (Macaca fascicularis) and blocked, sectioned, and prepared each hypothalamus for light microscopic immunocytochemistry for GnRH-containing cells. The distribution and number of GnRH-containing neurons were similar in adult and juvenile brains; however, GnRH-containing perikarya in adult brains were significantly larger in total cross-sectional area (200 +/- 12 vs. 169 +/- 8 micron 2, P less than 0.05) and in cross-sectional area of the cytoplasm (139 +/- 2 vs. 88 +/- 6 micron 2, P less than 0.05) than in juvenile brains. In another group of 10 juvenile male macaques, we administered an antiserum to GnRH (Fraser #94; 2 ml/kg, i.v.) and monitored the effects on plasma luteinizing hormone (LH) and testosterone concentrations. The percentage of plasma samples with detectable LH levels decreased significantly (from 26.67 +/- 8.3% to 5.3 +/- 3.4%, P less than 0.05) after GnRH antiserum administration; however, plasma testosterone concentrations (0.08 +/- 0.02 ng/ml) remained unchanged. We conclude that during pubertal maturation in primate species there is increased synthesis and release of GnRH from a population of GnRH neurons that are active prior to puberty.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010906 Pituitary Hormone-Releasing Hormones Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone. Hormones, Pituitary Hormone Releasing,Hypophysiotropic Hormones,Hypothalamic Hypophysiotropic Hormone,Hypothalamic Releasing Factor,Hypothalamic Releasing Hormone,Hypothalamic Releasing Hormones,Hormone, Hypothalamic Hypophysiotropic,Hormones, Hypophysiotropic,Hypophysiotropic Hormone, Hypothalamic,Pituitary Hormone Releasing Hormones,Releasing Hormone, Hypothalamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
November 1980, Endocrinology,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
August 1978, Endocrinology,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
June 1995, Journal of anesthesia,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
April 1982, The Journal of endocrinology,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
August 1973, American journal of veterinary research,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
February 1979, Endocrinology,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
December 1980, Fertility and sterility,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
January 1986, The Journal of clinical endocrinology and metabolism,
J L Cameron, and T H McNeill, and H M Fraser, and W J Bremner, and D K Clifton, and R A Steiner
January 1985, Fertility and sterility,
Copied contents to your clipboard!