Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. 1985

F T Boyd, and D W Clarke, and T F Muther, and M K Raizada

Neuronal cells from 1-day-old rat brain in primary culture have been utilized in the present study to characterize insulin-binding sites and a possible action of insulin on these cells. Binding of 125I-insulin to neuronal cultures was 90% specific and time-dependent and reached equilibrium in 120 min. Specific binding was reversible with greater than 90% of binding dissociable within 120 min with a t1/2 of dissociation of 15 min. Various insulin analogues competed for 125I-insulin binding to neuronal cultures according to their known biological potencies. Scatchard analysis of competition data yielded a typical curvilinear plot providing a class of high affinity (Kd = 11 nM) and low affinity (Kd = 65 nM) binding sites. Light microscopic autoradiographic analysis of 125I-insulin bound to neuronal cultures revealed the presence of silver grains predominantly on the neurites with occasional occurrence on the cell soma. Insulin had no effect on neuronal 2-deoxyglucose uptake in contrast with our previous findings demonstrating a 2-fold stimulation of 2-dGlc uptake into astrocyte glial cells from rat brain (Clarke, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizada, M. K. (1984) J. Biol. Chem. 259, 11672-11675). Incubation of neuronal cultures with insulin caused a dose-dependent inhibition of [3H]norepinephrine uptake with significant inhibition occurring at 1.67 X 10(-11) M. These findings demonstrate that: 1) neuronal cells in primary culture possess specific insulin receptors which are predominantly located on neurites and 2) insulin modulates monoamine uptake in these cultures which suggests that insulin may modulate neural signaling via specific neuronal insulin receptors.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
May 1985, The American journal of physiology,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
February 1986, The American journal of physiology,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
November 1984, The American journal of physiology,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
July 1993, Brain research. Developmental brain research,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
February 1990, Journal of neuroendocrinology,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
June 1989, Hypertension (Dallas, Tex. : 1979),
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
August 1993, Annals of the New York Academy of Sciences,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
December 2013, Journal of neurophysiology,
F T Boyd, and D W Clarke, and T F Muther, and M K Raizada
October 1986, Journal of neurochemistry,
Copied contents to your clipboard!