Kinetic studies of the lipid-activated pyruvate oxidase flavoprotein of Escherichia coli. 1985

M W Mather, and R B Gennis

Pyruvate oxidase is a flavoprotein dehydrogenase isolated from Escherichia coli which catalyzes the oxidative decarboxylation of pyruvate to acetate and CO2. In vivo, the enzyme can bind to the bacterial membrane and reduce ubiquinone-8, feeding electrons into the respiratory chain. The purified enzyme has been shown previously to bind to phospholipids and detergents and, upon doing so, is activated. The turnover with ferricyanide as an electron acceptor increases 20- to 30-fold upon lipid binding. In this work, initial velocity and stop-flow kinetics are used to investigate the activation of this enzyme. It is shown that the unactivated form of the enzyme is markedly hysteretic. Progress curves at low substrate concentrations show an initial acceleration in enzyme turnover. This is consistent with the results of stop-flow experiments. Rates obtained for either the reduction of the unactivated flavoprotein by pyruvate or its reoxidation by ferricyanide in single turnover experiments are much slower than the rates predicted by observed turnover in initial velocity studies, in some cases by more than 2 orders of magnitude. The data are best explained by the slow interconversion between two forms of the enzyme, one with low turnover and one which rapidly turns over. As isolated, the enzyme is highly unreactive, as revealed by the stop-flow experiments. During turnover, even in the absence of lipid activators, some of the enzyme converts to the rapid-turnover form. This slow interconversion is shown by kinetic simulation to preclude a steady state from being established. Lipid activators appear to shift the equilibrium to favor the rapid-turnover form of the enzyme. Once the enzyme is "locked" into an activated conformation, the hysteresis is no longer observed, and the stop-flow results are in agreement with data obtained from initial velocity experiments. Activation appears to result in both increased rates of electron transfer into and out of the flavin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011771 Pyruvate Oxidase Oxidase, Pyruvate
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D005420 Flavoproteins Flavoprotein

Related Publications

M W Mather, and R B Gennis
September 1966, Archives of biochemistry and biophysics,
M W Mather, and R B Gennis
January 1980, The Journal of biological chemistry,
M W Mather, and R B Gennis
September 1984, Archives of biochemistry and biophysics,
M W Mather, and R B Gennis
December 2000, The Biochemical journal,
M W Mather, and R B Gennis
June 1991, The Journal of biological chemistry,
M W Mather, and R B Gennis
September 1975, The Journal of biological chemistry,
Copied contents to your clipboard!