Morphological and functional changes in several endocrine glands induced by hypothyroidism in the rat. 1985

C L Gómez Dumm, and A M Cortizo, and J J Gagliardino

The effect of hypothyroidism upon the morphology and the function of several endocrine glands was studied in radiothyroidectomized male rats. It was found that T3, T4, insulin, prolactin and corticosterone levels were significantly lower in hypothyroid rats. TSH levels were significantly higher in these animals while no changes were depicted in testosterone levels. The administration of T4 drew back to normal range the above-mentioned altered serum hormone levels. The studies performed with light microscopy revealed alterations only in the TSH secretory cells of the adenohypophysis. Conversely, when using the electron microscope to study the different endocrine glands, clear alterations were depicted in the TSH and prolactin secretory cells of the adenohypophysis, as well as in the pancreatic B cells and the cells of the zona fasciculata of the adrenal cortex. No abnormal changes were demonstrable at the level of the seminiferous tubules of the testis. All the above morphological changes were corrected by the administration of T4 to hypothyroid rats. These results suggest that the hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The secretory alterations are accompanied by fine cellular alterations in the corresponding glands.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal

Related Publications

C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
April 1996, Toxicology,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
January 1969, Vestnik Akademii meditsinskikh nauk SSSR,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
November 1963, Archivio "de Vecchi" per l'anatomia patologica e la medicina clinica,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
January 1951, Revue d'hematologie,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
June 1958, Arkhiv patologii,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
January 1975, Fiziolohichnyi zhurnal,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
November 1963, Archivio "de Vecchi" per l'anatomia patologica e la medicina clinica,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
November 1963, Archivio "de Vecchi" per l'anatomia patologica e la medicina clinica,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
November 2006, Translational research : the journal of laboratory and clinical medicine,
C L Gómez Dumm, and A M Cortizo, and J J Gagliardino
June 1982, Liver,
Copied contents to your clipboard!