Lens junctional protein: analyzing MP26 with monoclonal antibodies. 1985

D F Sas, and M J Sas, and R G Johnson

Specific antibodies are versatile tools for analyzing cell surface proteins. This study involves the characterization of monoclonal antibodies which are specific for the junctional protein found in the lens fiber cell. This protein can be expected to include regions on the external membrane surface for junction formation, others on the cytoplasmic surface for regulation of junctional properties and, if cell-cell channels are indeed involved, transmembrane domains forming the hydrophilic connection between adjacent cytoplasms. Antibodies to these various regions would provide for an experimental analysis of the junctional protein, e.g., the identification of "active sites" for junction formation. Three monoclonal antibodies specific for the lens junctional protein in the chicken are described here. The first, termed B2, also recognizes the bovine junctional protein, MP26 (5). We have characterized the submolecular specificity of B2 and have found that it binds approximately ten amino acid residues from the C-terminus of MP26. In isolated lens junction preparations, B2 binds to the cytoplasmic surfaces of the lens junctions (both 12 nm and 16 nm thick forms). Thus, we consider MP26 a component of the lens junction. Monoclonal A4, the second antibody considered in detail here, was produced by immunization with lens membranes after treatment with low pH. We have found that lens junctional membranes are separated, or "split," by treatment at pH 2.5-3.0. It appears that A4 binds to the external surface of the junctional membrane; EM studies to confirm this are in progress. In order to map the A4 binding site within the chicken junctional protein and to explore the arrangement of this protein within the membrane, a number of procedures were used to generate fragments of MP26. These included reactions with N-chlorosuccinimide and proteases after acid treatment. Antibody binding to fragments was evaluated with immunotransfer ("Western") procedures. These studies mapped the A4 binding site to the center of the molecule and suggested that MP26 projected externally from the membrane at two different points. These results are consistent with a recent model, based on sequence data (6), for the arrangement of MP26 within the bovine lens membrane.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

D F Sas, and M J Sas, and R G Johnson
September 1988, Shi yan sheng wu xue bao,
D F Sas, and M J Sas, and R G Johnson
April 1986, The Journal of cell biology,
D F Sas, and M J Sas, and R G Johnson
March 1985, Current eye research,
D F Sas, and M J Sas, and R G Johnson
September 1987, Biochemical and biophysical research communications,
D F Sas, and M J Sas, and R G Johnson
January 1989, BioTechniques,
D F Sas, and M J Sas, and R G Johnson
February 1989, The Journal of membrane biology,
D F Sas, and M J Sas, and R G Johnson
November 1985, European journal of biochemistry,
D F Sas, and M J Sas, and R G Johnson
June 1992, Biochemical and biophysical research communications,
D F Sas, and M J Sas, and R G Johnson
January 1985, Biology of the cell,
D F Sas, and M J Sas, and R G Johnson
May 1986, Investigative ophthalmology & visual science,
Copied contents to your clipboard!