Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. 1985

D J Galas, and M Eggert, and M S Waterman

The basic nature of the sequence features that define a promoter sequence for Escherichia coli RNA polymerase have been established by a variety of biochemical and genetic methods. We have developed rigorous analytical methods for finding unknown patterns that occur imperfectly in a set of several sequences, and have used them to examine a set of bacterial promoters. The algorithm easily discovers the "consensus" sequences for the -10 and -35 regions, which are essentially identical to the results of previous analyses, but requires no prior assumptions about the common patterns. By explicitly specifying the nature of the search for consensus sequences, we give a rigorous definition to this concept that should be widely applicable. We also have provided estimates for the statistical significance of common patterns discovered in sets of sequences. In addition to providing a rigorous basis for defining known consensus regions, we have found additional features in these promoters that may have functional significance. These added features were located on either side of the -35 region. The pattern 5', or upstream, from the -35 region was found using the standard alphabet (A, G, C and T), but the pattern between the -10 and the -35 regions was detectable only in a sub-alphabet. Recent results relating DNA sequence to helix conformation suggest that the former (upstream) pattern may have a functional significance. Possible roles in promoter function are discussed in this light, and an observation of altered promoter function involving the upstream region is reported that appears to support the suggestion of function in at least one case.

UI MeSH Term Description Entries
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D010363 Pattern Recognition, Automated In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

D J Galas, and M Eggert, and M S Waterman
April 1983, Nucleic acids research,
D J Galas, and M Eggert, and M S Waterman
January 1996, Methods in enzymology,
D J Galas, and M Eggert, and M S Waterman
May 1994, BioFactors (Oxford, England),
D J Galas, and M Eggert, and M S Waterman
August 1988, Computer applications in the biosciences : CABIOS,
D J Galas, and M Eggert, and M S Waterman
March 2001, Bioinformatics (Oxford, England),
D J Galas, and M Eggert, and M S Waterman
October 1988, The Journal of biological chemistry,
D J Galas, and M Eggert, and M S Waterman
March 2000, The EMBO journal,
D J Galas, and M Eggert, and M S Waterman
May 1980, The Journal of biological chemistry,
D J Galas, and M Eggert, and M S Waterman
January 1985, Folia biologica,
Copied contents to your clipboard!