[Deacylated tRNA binds with 50S subunits of Escherichia coli ribosomes at a special site not corresponding to the P'-site]. 1985

D V Parfenov, and E M Saminskiĭ

In the presence of methanol 50S ribosomal subunits reveal two independents sites for binding of deacylated tRNA and/or AcPhe-tRNA. The site with lower affinity was identified with the donor (P') site as the dissociation constant (Ka) for AcPhe-tRNA was equal to the Michaelis constant for its reaction with puromycin both at 0 degrees C and 25 degrees C. Log Ka increases linearly with methanol concentration. This suggests that there are no conformational transitions of the interacting components, the affinity increases only quantatively due to lowering of the dielectric constant of water, and the site can exist even in the absence of methanol, but its Ka may be too low to be measured. It follows from these data that the higher-affinity site, which is observed both in the absence and presence of methanol, cannot be the P' site as it was generally believed. By all its properties it is more like the additional E site, which has been recently found on 70S ribosomes. Specifically, its affinity for deacylated tRNA is about 1000-fold higher than for AcPhe-tRNA (in the P'-site they are almost the same).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl

Related Publications

D V Parfenov, and E M Saminskiĭ
October 1973, Proceedings of the National Academy of Sciences of the United States of America,
D V Parfenov, and E M Saminskiĭ
November 1982, European journal of biochemistry,
D V Parfenov, and E M Saminskiĭ
October 1980, Nucleic acids research,
D V Parfenov, and E M Saminskiĭ
November 1986, The Journal of biological chemistry,
D V Parfenov, and E M Saminskiĭ
June 1977, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!