Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. 1985

E A Newsholme, and B Crabtree, and M S Ardawi

Glutamine is utilized at a high rate (fourfold higher than that of glucose) by isolated incubated lymphocytes and produces glutamate, aspartate, lactate and ammonia. The pathway for glutamine metabolism includes the reactions catalysed by glutaminase, aspartate aminotransferase, oxoglutarate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. In fact little if any of the carbon of the glutamine that is used is converted to acetyl-CoA for complete oxidation. For this reason, the oxidation of glutamine is only partial and, in an analogous manner to the terminology used to describe the partial oxidation of glucose to lactate as glycolysis, the term glutaminolysis is used to describe the process of partial glutamine oxidation. The role of glutaminolysis in lymphocytes and perhaps other rapidly dividing cells is to provide both nitrogen and carbon for precursors for synthesis of macromolecules (e.g. purines and pyrimidines for DNA and RNA) and also energy. However, the rate of glutamine utilization by lymphocytes is markedly in excess of the precursor requirements (which are at most 4%) and if glutamine was vitally important in energy production it would be expected that more would be converted to acetyl-CoA for complete oxidation via the Krebs cycle. Indeed most of the energy for lymphocytes may be obtained by the complete oxidation of fatty acids and ketone bodies. Consequently the role of the high rate of glutaminolysis in lymphocytes and other rapidly dividing cells may be identical to that of glycolysis: the high rates provide ideal conditions for the precise and sensitive control of the rate of use of the intermediates of these pathways for biosynthesis when required. High rates of glycolysis and glutaminolysis can be seen as part of a mechanism of control to permit synthesis of macromolecules when required without any need for extracellular signals to make more glucose or glutamine available for these cells. In order to maintain a high rate of glutaminolysis despite fluctuation in the plasma level of glutamine, the flux through the glutaminolytic pathway can be controlled and the key processes in the lymphocyte that may play a role in this process include glutamine transport across the cell and mitochondrial membranes, glutaminase and oxoglutarate dehydrogenase. Changes in the intracellular concentration of Ca2+ may play a role in control of one or more of these reactions.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D005972 Glutaminase Phosphate-Activated Glutaminase,Glutaminase, Phosphate-Activated,Phosphate Activated Glutaminase

Related Publications

E A Newsholme, and B Crabtree, and M S Ardawi
June 1999, The Journal of nutritional biochemistry,
E A Newsholme, and B Crabtree, and M S Ardawi
January 1990, JPEN. Journal of parenteral and enteral nutrition,
E A Newsholme, and B Crabtree, and M S Ardawi
April 1983, Physiological reviews,
E A Newsholme, and B Crabtree, and M S Ardawi
February 1990, Clinical nutrition (Edinburgh, Scotland),
E A Newsholme, and B Crabtree, and M S Ardawi
August 1989, Metabolism: clinical and experimental,
E A Newsholme, and B Crabtree, and M S Ardawi
January 1985, Essays in biochemistry,
E A Newsholme, and B Crabtree, and M S Ardawi
April 1993, Zhonghua yi xue za zhi,
E A Newsholme, and B Crabtree, and M S Ardawi
January 1988, Metabolism: clinical and experimental,
E A Newsholme, and B Crabtree, and M S Ardawi
December 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
E A Newsholme, and B Crabtree, and M S Ardawi
June 1983, The Biochemical journal,
Copied contents to your clipboard!