On the fidelity of DNA replication: manganese mutagenesis in vitro. 1985

R A Beckman, and A S Mildvan, and L A Loeb

Manganese is mutagenic in vivo and in vitro in studies with a variety of enzymes and templates. Using Escherichia coli DNA polymerase I with poly[d(A-T)] and phi X174 DNA templates, we analyzed the mechanism of manganese mutagenesis by determining the dependence of error rate on free Mn2+ concentration and comparing this to measured dissociation constants of Mn2+ from enzyme, template, and deoxynucleoside triphosphate substrates. This comparison suggests several conclusions: (1) At very low Mn2+ concentrations, the enzyme is activated at high fidelity. Thus, it is unlikely that activation with manganese per se significantly alters the conformation of the enzyme so as to affect nucleotide selection. (2) At low free Mn2+ concentrations (less than 100 microM), manganese causes errors in incorporation via its interaction with the DNA template. The concentration dependence of mutagenesis is determined by the strength of binding Mn2+ to the particular DNA template used. The data do not allow one to rule out the possibility that Mn2+-deoxynucleoside triphosphate interactions contribute to mutagenesis in selected situations. This range of free Mn2+ concentrations is the one of greatest relevance for in vivo mutagenesis. (3) At higher concentrations (between 500 microM and 1.5 mM), further mutagenesis by Mn2+ occurs. This mutagenesis probably is due either to binding of manganese to single-stranded regions within the DNA or to weak accessory sites on the enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011067 Poly dA-dT Polydeoxyribonucleotides made up of deoxyadenine nucleotides and thymine nucleotides. Present in DNA preparations isolated from crab species. Synthetic preparations have been used extensively in the study of DNA. Poly(Deoxyadenylate-Thymidylate),Polydeoxyadenine Nucleotides-Polythymine Nucleotides,Poly dA dT,Poly(dA-dT),d(A(5)T(5))2,Nucleotides, Polydeoxyadenine Nucleotides-Polythymine,Nucleotides-Polythymine Nucleotides, Polydeoxyadenine,Polydeoxyadenine Nucleotides Polythymine Nucleotides,dA dT, Poly,dA-dT, Poly,dT, Poly dA
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA

Related Publications

R A Beckman, and A S Mildvan, and L A Loeb
March 2002, Seikagaku. The Journal of Japanese Biochemical Society,
R A Beckman, and A S Mildvan, and L A Loeb
January 1984, Advances in experimental medicine and biology,
R A Beckman, and A S Mildvan, and L A Loeb
January 1979, Cold Spring Harbor symposia on quantitative biology,
R A Beckman, and A S Mildvan, and L A Loeb
August 1984, Journal of molecular biology,
R A Beckman, and A S Mildvan, and L A Loeb
September 1992, The Journal of biological chemistry,
R A Beckman, and A S Mildvan, and L A Loeb
April 2004, The Journal of biological chemistry,
R A Beckman, and A S Mildvan, and L A Loeb
January 2008, Postepy biochemii,
R A Beckman, and A S Mildvan, and L A Loeb
January 2000, Annual review of biochemistry,
R A Beckman, and A S Mildvan, and L A Loeb
February 1984, The Journal of biological chemistry,
Copied contents to your clipboard!