Thermal denaturation of staphylococcal nuclease. 1985

R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant

The fully reversible thermal denaturation of staphylococcal nuclease in the absence and presence of Ca2+ and/or thymidine 3',5'-diphosphate (pdTp) from pH 4 to 8 has been studied by high-sensitivity differential scanning calorimetry. In the absence of ligands, the denaturation is accompanied by an enthalpy change of 4.25 cal g-1 and an increase in specific heat of 0.134 cal K-1 g-1, both of which are usual values for small globular proteins. The temperature (tm) of maximal excess specific heat is 53.4 degrees C. Each of the ligands, Ca2+ and pdTp, by itself has important effects on the unfolding of the protein which are enhanced when both ligands are present. Addition of saturating concentrations of these ligands raises the denaturational enthalpy to 5.74 cal g-1 in the case of Ca2+ and to 6.72 cal g-1 in the case of pdTp. The ligands raise the tm by as much as 11 degrees C depending on ligand concentration. From the variation of the denaturational enthalpies with ligand concentrations, binding constants at 53 degrees C equal to 950 M-1 and 1.4 X 10(4) M-1 are estimated for Ca2+ and pdTp, respectively, and from the enthalpies at ligand saturation, binding enthalpies at 53 degrees C of -15.0 and -19.3 kcal mol-1.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
January 1989, Biofizika,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
April 1996, Archives of biochemistry and biophysics,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
June 1994, Protein science : a publication of the Protein Society,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
February 1995, Biochemistry,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
January 1986, Journal of cellular biochemistry,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
June 1994, Protein science : a publication of the Protein Society,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
September 1994, Biochemistry,
R O Calderon, and N J Stolowich, and J A Gerlt, and J M Sturtevant
March 1996, Biochemistry,
Copied contents to your clipboard!