Serotonergic innervation of the forebrain in the North American opossum. 1985

G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer

The forebrain distribution of axons showing serotonin-like immunoreactivity was studied in the North American opossum. Serotonergic innervation of the hypothalamus was extensive, particularly within the ventromedial nucleus, the periventricular nucleus and the rostral supraoptic nucleus. Serotonergic axons were also present within the fields of Forel and zona incerta, but they tended to avoid parts of the subthalamic nucleus. In the thalamus serotonergic innervation was dense within the midline nuclei (e.g. the central, intermediate dorsal and rhomboid nuclei) and the ventral lateral geniculate nucleus, but relatively sparse in some of the nuclei more readily associated with specific functions (e.g. the ventrobasal nucleus). Serotonergic axons innervate most areas of the rostral and dorsal forebrain. Areas containing the heaviest innervation included the interstitial nucleus of the stria terminalis and the lateral septal nucleus. Serotonergic innervation of the neocortex varied markedly from region to region and within different layers of the same regions. The retrograde transport of True Blue combined with immunofluorescence for localization of serotonin revealed that serotonergic axons within the forebrain arise mainly within the dorsal raphe and superior central nuclei, but that some originate within the midbrain and pontine reticular formation and the locus coeruleus, pars alpha. Neurons of the raphe magnus and obscurus also innervate the forebrain, but few of them are serotonergic. The use of horseradish peroxidase as a retrograde marker provided evidence that raphe projections to the forebrain are topographically organized. Our results suggest that serotonergic projections to the forebrain, like those to the spinal cord, are connectionally heterogeneous.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008474 Medial Forebrain Bundle A complex group of fibers arising from the basal olfactory regions, the periamygdaloid region, and the septal nuclei, and passing to the lateral hypothalamus. Some fibers continue into the tegmentum. Median Forebrain Bundle,Bundle, Medial Forebrain,Bundle, Median Forebrain,Bundles, Medial Forebrain,Bundles, Median Forebrain,Forebrain Bundle, Medial,Forebrain Bundle, Median,Forebrain Bundles, Medial,Forebrain Bundles, Median,Medial Forebrain Bundles,Median Forebrain Bundles
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
January 1988, Brain, behavior and evolution,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
January 1988, Brain, behavior and evolution,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
March 2004, Psychopharmacology,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
October 1977, The Journal of comparative neurology,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
March 1996, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
October 1973, Journal of the National Cancer Institute,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
May 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
January 1982, Brain research bulletin,
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
December 1968, Journal of immunology (Baltimore, Md. : 1950),
G F Martin, and G DeLorenzo, and R H Ho, and A O Humbertson, and R Waltzer
January 1989, The Journal of comparative neurology,
Copied contents to your clipboard!