Anatomy of the cecum of the vole, microtus agrestis. 1979

R L Snipes

The anatomy of the cecum of the vole, Microtus agrestis, was investigated using macroscopic dissections, "wet" and dried total specimens, and correlated light, scanning and electron microscopy. The cecum of the vole reveals a series of structural differentiations including a mural lip in the ampulla ceci and a spiral fold in the corpus ceci. The mucosa covering the cecal wall possesses short, wide-opened crypts and differs from the classical descriptions of the large intestinal mucosa. Fine structural observations suggest the cecal epithelium to be capable of active absorption. The morphological findings are correlated with the herbivorous habit of the vole and compared with observations in the rabbit and other rodents.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D003411 Arvicolinae A subfamily of MURIDAE found nearly world-wide and consisting of about 20 genera. Voles, lemmings, and muskrats are members. Clethrionomys,Cricetidae,Dicrostonyx,Lemmings,Lemmus,Mice, Red-Backed,Microtinae,Microtus,Muskrats,Ondatra,Voles,Arvicolines,Microtines,Mouse, Red-Backed,Myodes,Ondatra zibethicus,Arvicoline,Lemming,Mice, Red Backed,Microtine,Mouse, Red Backed,Muskrat,Red-Backed Mice,Red-Backed Mouse,Vole
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012377 Rodentia A mammalian order which consists of 29 families and many genera. Beavers,Capybaras,Castor Beaver,Dipodidae,Hydrochaeris,Jerboas,Rodents,Beaver,Capybara,Hydrochaeri,Jerboa,Rodent,Rodentias

Related Publications

R L Snipes
November 1974, Journal of reproduction and fertility,
R L Snipes
June 1964, General and comparative endocrinology,
R L Snipes
December 1972, Journal of reproduction and fertility,
R L Snipes
May 1971, Journal of reproduction and fertility,
R L Snipes
August 1974, Journal of reproduction and fertility,
R L Snipes
September 1970, The Journal of physiology,
R L Snipes
January 1996, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
R L Snipes
February 1969, Journal of reproduction and fertility,
R L Snipes
October 1970, Journal of reproduction and fertility,
Copied contents to your clipboard!