Influence of ethanol induction on the metabolic activation of genotoxic agents by isolated rat hepatocytes. 1985

J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson

The effects of ethanol-feeding to rats, over a 6-week period, on the activation of genotoxic compounds of different chemical classes, requiring metabolic conversion to exert their mutagenic activity, were studied in isolated rat hepatocytes. The influence of such treatment on cytochrome P-450 content and N-acetylation in isolated hepatocytes was also investigated. Benzidine (BZ), dimethylnitrosamine (DMN), diethylnitrosamine (DEN), isoniazid (INH) and cyclophosphamide (CP) were more effectively activated to products mutagenic towards Salmonella typhimurium by hepatocytes from ethanol-pretreated rats than by hepatocytes from controls. The mutagenic potency of 2-aminofluorene (2-AF) and 2-acetylaminofluorene (2-AAF) was not influenced by ethanol pretreatment. Ethanol consumption was found to be associated with increased cytochrome P-450 content and enhanced N-acetylation in the isolated hepatocytes. Our results support the hypothesis that an alteration of the hepatic drug-metabolizing system may be responsible for the ethanol-induced increase in susceptibility to certain genotoxic compounds.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
January 1982, Toxicology,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
January 1990, SAAS bulletin, biochemistry and biotechnology,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
October 2002, Drug metabolism and disposition: the biological fate of chemicals,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
January 2003, Chemico-biological interactions,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
December 1990, Biochemical pharmacology,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
August 1981, FEBS letters,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
April 1983, Archives of toxicology,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
December 1996, European journal of pharmacology,
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
January 1986, Hepatology (Baltimore, Md.),
J M Neis, and B W te Brömmelstroet, and P J van Gemert, and H M Roelofs, and P T Henderson
April 1983, Biochemical pharmacology,
Copied contents to your clipboard!