Plasmid recombination intermediates generated in a Saccharomyces cerevisiae cell-free recombination system. 1985

L S Symington, and P Morrison, and R Kolodner

We have developed an assay utilizing Saccharomyces cerevisiae cell extracts to catalyze recombination in vitro between homologous plasmids containing different mutant alleles of the tet gene. Electrophoretic analysis of product DNA indicated that a number of novel DNA species were formed during the reaction. These species migrated through agarose gels as distinct bands with decreased electrophoretic mobility compared with the substrate DNA. The DNA from each individual band was purified and shown to be enriched 5- to 100-fold for tetracycline-resistant recombinants by using a transformation assay. The structure of the DNA molecules present in these bands was determined by electron microscopy. Recombination between circular substrates appeared to involve the formation and processing of figure-eight molecules, while recombination between circular and linear substrates involved the formation of molecules in which a circular monomer had a monomer-length linear tail attached at a region of homology.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

L S Symington, and P Morrison, and R Kolodner
June 1992, Genetics,
L S Symington, and P Morrison, and R Kolodner
October 1996, Molecular & general genetics : MGG,
L S Symington, and P Morrison, and R Kolodner
June 1988, Molecular and cellular biology,
L S Symington, and P Morrison, and R Kolodner
November 2023, Journal of microbiology (Seoul, Korea),
L S Symington, and P Morrison, and R Kolodner
March 1990, The EMBO journal,
L S Symington, and P Morrison, and R Kolodner
February 1990, Journal of bacteriology,
L S Symington, and P Morrison, and R Kolodner
January 2009, Methods in molecular biology (Clifton, N.J.),
L S Symington, and P Morrison, and R Kolodner
June 1998, Molecular & general genetics : MGG,
L S Symington, and P Morrison, and R Kolodner
October 2003, BioTechniques,
Copied contents to your clipboard!