Molecular cloning and characterization of the STE7 and STE11 genes of Saccharomyces cerevisiae. 1985

D T Chaleff, and K Tatchell

In the yeast Saccharomyces cerevisiae, haploid cells occur in one of the two cell types, a or alpha. The allele present at the mating type (MAT) locus plays a prominent role in the control of cell type expression. An important consequence of the elaboration of cell type is the ability of cells of one mating type to conjugate with cells of the opposite mating type, resulting in yet a third cell type, an a/alpha diploid. Numerous genes that are involved in the expression of cell type and the conjugation process have been identified by standard genetic techniques. Molecular analysis has shown that expression of several of these genes is subject to control on the transcriptional level by the MAT locus. Two genes, STE7 and STE11, are required for mating in both haploid cell types; ste7 and ste11 mutants are sterile. We report here the molecular cloning of STE7 and STE11 genes and show that expression of these genes is not regulated transcriptionally by the MAT locus. We also have genetically mapped the STE11 gene to chromosome XII, 40 centimorgans from ura4.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006238 Haploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N. Haploid,Haploid Cell,Cell, Haploid,Cells, Haploid,Haploid Cells,Haploidies,Haploids
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

D T Chaleff, and K Tatchell
February 1986, Molecular and cellular biology,
D T Chaleff, and K Tatchell
February 1988, Molecular and cellular biology,
D T Chaleff, and K Tatchell
October 1983, The Journal of biological chemistry,
D T Chaleff, and K Tatchell
February 1984, Proceedings of the National Academy of Sciences of the United States of America,
D T Chaleff, and K Tatchell
April 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!