Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. 1985

H Vanden Bossche

The selective interaction of low concentrations of azole derivatives and other nitrogen heterocycles with cytochrome P-450 may be at the origin of the inhibition of ergosterol biosynthesis. From the depletion of ergosterol and the concomitant accumulation of 14 alpha-methylsterols, alterations in membrane functions, the synthesis and activity of membrane-bound enzymes, mitochondrial activities, and an uncoordinated activation of chitin synthase may result. Since chitin synthesis is more important in the hyphal form than in the budding form of C. albicans, the uncoordinated activation of chitin synthesis may be more trouble for the hyphal growth than for yeast budding. The assumption is made that from this difference the greater sensitivity of hyphal growth to azole antifungal agents may originate. It is also assumed that the higher degree of lipid unsaturation may be related to an inhibition of ergosterol biosynthesis. The inhibition of fatty acid desaturation and elongation induced by higher doses of miconazole and ketoconazole and the longer contact times might be related to interference with membrane fluidity, or it might due to chelation of the iron used in the oxidation reduction sequence during desaturation. The decreased availability of ergosterol and the accumulation of 14 alpha-methylsterols also may provide the environment needed to inactivate membrane-bound enzymes; e.g., cytochrome c peroxidase. However, it is still too speculative to correlate effects on membrane components with miconazole-induced changes in properties of all oxidases; e.g., the NADH-dependent, cyanide-insensitive oxidase. The accumulation of toxic concentrations of hydrogen peroxide, resulting from an increased NADH-oxidase activity and disappearance of the peroxidase and catalase activity, may contribute to the degeneration of subcellular structures. The complete disappearance of catalase observed at concentrations of miconazole greater than or equal to 10(-5) M may originate from direct effects on the cell. At these high concentrations reached only by topical application, direct membrane damage resulting from interaction of miconazole with lipids was observed. These direct interactions result in an inhibition of membrane-bound enzyme and mitochondrial activities and in leakage of intracellular components. The direct interactions were much less pronounced in cells treated with ketoconazole. This correlates with the smaller area occupied in the membrane per ketoconazole molecule (30 A2), compared with that occupied in the membrane per miconazole molecule (90 A2).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002686 Chitin A linear polysaccharide of beta-1->4 linked units of ACETYLGLUCOSAMINE. It is the second most abundant biopolymer on earth, found especially in INSECTS and FUNGI. When deacetylated it is called CHITOSAN.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004875 Ergosterol A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). Lumisterol,Pro-Vitamin D2,Provitamin D 2,D2, Pro-Vitamin,Pro Vitamin D2
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Vanden Bossche
August 1991, Biochemical Society transactions,
H Vanden Bossche
November 1993, Biochemical Society transactions,
H Vanden Bossche
November 1989, Biochemical and biophysical research communications,
H Vanden Bossche
March 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
H Vanden Bossche
April 1988, Clinical microbiology reviews,
H Vanden Bossche
January 1996, Microbios,
H Vanden Bossche
November 2008, Expert opinion on drug delivery,
H Vanden Bossche
January 1998, Bioorganic & medicinal chemistry,
H Vanden Bossche
December 1999, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy,
Copied contents to your clipboard!