Activation of virus specific CTL clones: antigen-dependent regulation of interleukin 2 receptor expression. 1985

M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale

Interleukin 2 (IL 2) is a lymphocyte-specific growth hormone, whose effect on lymphocyte proliferation is exerted through a cell surface receptor expressed on activated lymphocytes. In this report we have used monoclonal antibodies directed to the murine IL 2 receptor to examine the regulation of the IL 2 receptor expression on cloned populations of influenza virus-specific CTL. The CTL clones, which are dependent on both specific antigenic stimulation and exogenous IL 2 for continuous in vitro propagation, express high levels of the IL 2 receptor shortly after antigenic stimulation (day 2 or 3). Over the next 5 to 8 days of in vitro cultivation in IL 2-containing medium, these cloned CTL cells express decreasing levels of IL 2 receptor. Concomitant with this fall in IL 2 receptor expression, the cells become refractory to the IL 2 proliferative stimulus. The cloned cells remain refractory to IL 2 until specifically stimulated by antigen, which induces high levels of the IL 2 receptor on the cells and renders the cells sensitive to IL 2 once again. These results support the concept that IL 2 receptor expression on activated T lymphocytes is transitory and that receptor expression is endogenously regulated in the activated T lymphocytes. These results also suggest that antigen plays a primary role in regulating T lymphocyte proliferation by maintaining IL 2 receptor levels.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
January 1988, Immunology letters,
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
January 2011, International immunopharmacology,
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
October 1984, Journal of immunology (Baltimore, Md. : 1950),
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
February 1984, Journal of immunology (Baltimore, Md. : 1950),
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
February 1988, Cellular immunology,
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
July 1986, Journal of immunology (Baltimore, Md. : 1950),
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
April 2011, Immune network,
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
June 1986, Scandinavian journal of immunology,
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
January 1988, Journal of immunology (Baltimore, Md. : 1950),
M E Andrew, and A M Churilla, and T R Malek, and V L Braciale, and T J Braciale
August 1986, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!