Differential interaction of cations with the thiamine and biotin transport proteins of Lactobacillus casei. 1985

G B Henderson, and J M Kojima, and H P Kumar

Lactobacillus casei cells contain separate and specific binding proteins which mediate the cellular uptake of thiamine and biotin. In buffered salt solutions, these proteins exhibit a very high affinity for their vitamin substrate. Dissociation constants (Kd values) at pH 7.5 are 0.03 and 0.15 nM for thiamine and biotin, respectively. Optimal binding of biotin requires the presence of cations. This cation dependence is substantial since the Kd for biotin is 60-fold higher in a buffer containing 0.1 mM K-Hepes, compared with a buffer composed of 50 mM K-Hepes and 5 mM MgCl2. Measurements of Kd versus cation concentration showed that Mg2+ is 300-fold more effective than K+ in promoting biotin binding. The extent of cation dependence decreases as the pH is reduced from 7.5 to 5.0, suggesting that protons can partially fulfill the cation requirement. In contrast, binding of thiamine to the thiamine transport protein shows no dependence on the ionic composition of the medium. These results suggest that the transport protein for the anionic vitamin, biotin, contains a binding site for cations. Cotransport of both the vitamin and cation into the cell might then occur during the normal transport cycle, allowing the cellular uptake of the vitamin to occur against the membrane potential. Conversely, the cationic vitamin, thiamine, does not appear to be transported into the cell as a complex with other ions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007780 Lacticaseibacillus casei A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina. L. casei is CATALASE positive. Lactobacillus casei
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D013831 Thiamine 3-((4-Amino-2-methyl-5-pyrimidinyl)methyl)-5-(2- hydroxyethyl)-4-methylthiazolium chloride. Aneurin,Vitamin B 1,Thiamin,Thiamine Mononitrate,Vitamin B1,Mononitrate, Thiamine

Related Publications

G B Henderson, and J M Kojima, and H P Kumar
January 1977, Journal of supramolecular structure,
G B Henderson, and J M Kojima, and H P Kumar
March 1978, Journal of bacteriology,
G B Henderson, and J M Kojima, and H P Kumar
November 1951, The Journal of biological chemistry,
G B Henderson, and J M Kojima, and H P Kumar
June 1976, The Journal of biological chemistry,
G B Henderson, and J M Kojima, and H P Kumar
October 1974, Archives of biochemistry and biophysics,
G B Henderson, and J M Kojima, and H P Kumar
January 1982, Archives of biochemistry and biophysics,
G B Henderson, and J M Kojima, and H P Kumar
January 1949, Il Farmaco, scienza e tecnica,
G B Henderson, and J M Kojima, and H P Kumar
June 1951, The Biochemical journal,
Copied contents to your clipboard!